Skip to main content

Advertisement

Log in

Pharmacological and Biochemical Aspects of GABAergic Neurotransmission: Pathological and Neuropsychobiological Relationships

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

1. The GABAergic neurotransmission has been implicated in the modulation of many neural networks in forebrain, midbrain and hindbrain, as well as, in several neurological disorders.

2. The complete comprehension of GABA system neurochemical properties and the search for approaches in identifying new targets for the treatment of neural diseases related to GABAergic pathway are of the extreme relevance.

3. The present review will be focused on the pharmacology and biochemistry of the GABA metabolism, GABA receptors and transporters. In addition, the pathological and psychobiological implications related to GABAergic neurotransmission will be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agostinho, P., Duarte, C. B., Carvalho, A. P., and Oliveira, C. R. (1994). Effect of oxidative stress on the release of [3H]GABA in culture chick retina cells. Brain Res. 655:213–221.

    PubMed  CAS  Google Scholar 

  • Albrecht, B. E., and Darlison, M. G. (1995). Localization of the rho 1- and rho 2-subunit messenger RNAs in chick retina by in situ hybridization predicts the existence of gamma-aminobutyric acid type C receptor subtypes. Neurosci. Lett. 189:155–158.

    PubMed  CAS  Google Scholar 

  • Andersen, K. E., Braestrup, C., Gronwald, F. C., Jorgensen, A. S., Nielsen, E. B., Sonnewald, U., Sorensen, P. O., Suzdak, P. D., and Knutsen, L. J. (1993). The synthesis of novel GABA uptake inhibitors. 1. Elucidation of the structure–activity studies leading to the choice of (R)-1-[4,4-bis(3-methyl-2-thienyl)-3-butenyl]-3-piperidinecarboxylic acid (tiagabine) as an anticonvulsant drug candidate. J. Med. Chem. 36:1716–1725.

    PubMed  CAS  Google Scholar 

  • Andersen, K. E., Lau, J., Lundt, B. F., Petersen, H., Huusfeldt, P. O., Suzdak, P. D., and Swedberg, M. D. (2001b). Synthesis of novel GABA uptake inhibitors. Part 6: Preparation and evaluation of N-Omega asymmetrically substituted nipecotic acid derivatives. Bioorg. Med. Chem. 9:2773–2785.

    CAS  Google Scholar 

  • Andersen, K. E., Sorensen, J. L., Lau, J., Lundt, B. F., Petersen, H., Huusfeldt, P. O., Suzdak, P. D., and Swedberg, M. D. (2001a). Synthesis of novel gamma-aminobutyric acid (GABA) uptake inhibitors. 5. (1) Preparation and structure–activity studies of tricyclic analogues of known GABA uptake inhibitors. J. Med. Chem. 44:2152–2163.

    CAS  Google Scholar 

  • Anderson, M., and Yoshida, M. (1977). Electrophysiological evidence for branching nigral projections to the thalamus and the superior colliculus. Brain Res. 137:361–364.

    PubMed  CAS  Google Scholar 

  • Araque, A., Li, N., Doyle, R. T., and Haydon, P. G. (2000). SNARE protein-dependent glutamate release from astrocytes. J. Neurosci. 20:666–673.

    PubMed  CAS  Google Scholar 

  • Attwell, D., Barbour, B., and Szatkowski, M. (1993). Nonvesicular release of neurotransmitter. Neuron 11:401–407.

    PubMed  CAS  Google Scholar 

  • Awapara, J., Landua, A. J., Fuerst, R., and Seale, B. (1950). Free gamma-aminobutyric acid in brain. J. Biol. Chem. 187:35–39.

    PubMed  CAS  Google Scholar 

  • Bagri, A., Sandner, G., and DiScala, G. (1989). Effects of unilateral microinjections of GABAergic drugs into the inferior colliculus on auditory evoked potentials and on audiogenic seizure susceptibility. Exp. Neurol. 104:82–87.

    PubMed  CAS  Google Scholar 

  • Barnes, E. M., Jr. (2000). Intracellular trafficking of GABA(A) receptors. Life Sci. 66:1063–1070.

    PubMed  CAS  Google Scholar 

  • Bazil, C. W., and Pedley, T. A. (1998). Advances in the medical treatment of epilepsy. Annu. Rev. Med. 49:135–162.

    PubMed  CAS  Google Scholar 

  • Beckman, M. L., Bernstein, E. M., and Quick, M. W. (1998). Protein kinase C regulates the interaction between a GABA transporter and syntaxin 1A. J. Neurosci. 18:6103–6112.

    PubMed  CAS  Google Scholar 

  • Benavides, J., Peny, B., Ruano, D., Vitorica, J., and Scatton, B. (1993). Comparative autoradiographic distribution of central omega (benzodiazepine) modulatory site subtypes with high, intermediate and low affinity for zolpidem and alpidem. Brain Res. 604:240–250.

    PubMed  CAS  Google Scholar 

  • Bernath, S., and Zigmond, M. J. (1988). Characterization of [3H]GABA release from striatal slices: Evidence for a calcium-independent process via the GABA uptake system. Neuroscience 27:563–570.

    PubMed  CAS  Google Scholar 

  • Bernstein, E. M., and Quick, M. W. (1999). Regulation of gamma-aminobutyric acid (GABA) transporters by extracellular GABA. J. Biol. Chem. 274:889–895.

    PubMed  CAS  Google Scholar 

  • Bevan, M. D., Smith, A. D., and Bolam, J. P. (1996). The substantia nigra as a site of synaptic integration of functionally diverse information arising from the ventral pallidum and the globus pallidus in the rat. Neurosci. Lett. 75:5–12.

    CAS  Google Scholar 

  • Billinton, A., Ige, A. O., Bolam, J. P., White, J. H., Marshall, F. H., and Emson, P. C. (2001). Advances in the molecular understanding of GABA(B) receptors. Trends Neurosci. 24:277–282.

    PubMed  CAS  Google Scholar 

  • Blanchard, D. C., Griebel, G., and Blanchard, R. J. (2003). The Mouse Defense Test Battery: Pharmacological and behavioral assays for anxiety and panic. Eur. J. Pharmacol. 463:97–116.

    PubMed  CAS  Google Scholar 

  • Bolam, J. P., Hanley, J. J., Booth, P. A., and Bevan, M. D. (2000). Synaptic organization of the basal ganglia. J. Anat. 196:527–542.

    PubMed  CAS  Google Scholar 

  • Borden, L. A. (1996). GABA transporter heterogeneity: Pharmacology and cellular localization. Neurochem. Int. 29:335–356.

    PubMed  CAS  Google Scholar 

  • Borden, L. A., Smith, K. E., Gustafson, E. L., Branchek, T. A., and Weinshank, R. L. (1995). Cloning and expression of a betaine/GABA transporter from human brain. J. Neurochem. 64:977–984.

    Article  PubMed  CAS  Google Scholar 

  • Borelli, K. G., Nobre, M. J., Brandão, M. L., and Coimbra, N. C. (2004). Effects of acute and chronic fluoxetine and diazepam on freezing behavior induced by electrical stimulation of dorsolateral and lateral columns of the periaqueductal gray matter. Pharmacol. Biochem. Behav. 77:557–566.

    PubMed  CAS  Google Scholar 

  • Bormann, J. (2000). The ‘ABC’ of GABA receptors. Trends Pharmacol. Sci. 21:16–19.

    PubMed  CAS  Google Scholar 

  • Bormann, J., and Feigenspan, A. (1995). GABAC receptors. Trends Neurosci. 18:515–519.

    PubMed  CAS  Google Scholar 

  • Bottiglieri, T., Anderson, D., Gibson, K. M., Froestl, W., and Diaz-Arrastia, R. (2001). Effect of gamma-hydroxybutyrate on locomotor activity and brain dopamine metabolism in the rat. Soc. Neurosci. Abstr. 27:971.

    Google Scholar 

  • Bowery, N. G., Bettler, B., Froestl, W., Gallagher, J. P., Marshall, F., Raiteri, M., Bonner, T. I., and Enna,S. J. (2002). International Union of Pharmacology. XXXIII. Mammalian gamma-aminobutyric acid(B) receptors: Structure and function. Pharmacol. Rev. 54:247–264.

    PubMed  CAS  Google Scholar 

  • Bowery, N. G., and Enna, S. J. (2000). γ-Aminobutyric acid B receptors: First of the functional metabotropic heterodimers. J. Pharmacol. Exp. Ther. 292:2–7.

    PubMed  CAS  Google Scholar 

  • Bowery, N. G., Hill, D. R., Hudson, A. L., Doble, A., Middlemiss, D. N., Shaw, J., and Turnbull, M. (1980).(—)Baclofen decreases neurotransmitter release in the mammalian CNS by an action at a novel GABA receptor. Nature 283:92–94.

    PubMed  CAS  Google Scholar 

  • Bowery, N. G., Hudson, A. L., and Price, G. W. (1987). GABA-A and GABA-B receptors site distribution in the rat central nervous system. Neuroscience 20:365–383.

    PubMed  CAS  Google Scholar 

  • Bradford, H. F. (1995). Glutamate, GABA and epilepsy. Prog. Neurobiol. 47:477–511.

    PubMed  CAS  Google Scholar 

  • Brandão, M. L., Aguiar, J. C., and Graeff, F. G. (1982). GABA mediation of the antiaversive action of the minor tranquilizers. Pharmacol. Biochem. Behav. 16:397–402.

    PubMed  Google Scholar 

  • Brandão, M. L., Anseloni, V. Z., Pandóssio, J. E., De Araújo, J. E., and Castilho, V. M. (1999). Neurochemical mechanisms of the defensive behavior in the dorsal midbrain. Neurosci. Biobehav. Rev. 23:863–875.

    PubMed  Google Scholar 

  • Brandão, M. L., Cardoso, S. H., Melo, L. L., Motta, V., and Coimbra, N. C. (1994). The neural substrate of defensive behavior in the midbrain tectum. Neurosci. Biobehav. Rev. 18:339–346.

    PubMed  Google Scholar 

  • Brandão, M. L., Coimbra, N. C., and Osaki, M. Y. (2001). Changes in the auditory-evoked potentials induced by fear-evoking stimulations. Physiol. Behav. 72:365–372.

    PubMed  Google Scholar 

  • Brandão, M. L., DiScala, G., Bouchet, M. J., and Schmitt, P. (1986). Escape behavior induced by blockade of glutamic acid decarboxilase (GAD) in mesencephalic central gray or medial hypothalamus. Pharmacol. Biochem. Behav. 24:497–501.

    PubMed  Google Scholar 

  • Brandão, M. L., Melo, L. L., and Cardoso, S. H. (1993). Mechanisms of defense in the inferior colliculus. Behav. Brain Res. 58:49–55.

    PubMed  Google Scholar 

  • Brandão, M. L., and Schmitt, P. (1987). Role of nigrocollicular GABAergic fibers in the genesis of aversive behaviour. In Brandão, M. L. (ed.), Neurosciences and Behaviour, Gráfica da UFES, Vitória, Brazil, pp. 31–44.

    Google Scholar 

  • Brandão, M. L., Tomaz, C., Coimbra, N. C., and Bagri, A. (1988). Defense reaction induced by microinjection of bicuculline into the inferior colliculus. Physiol. Behav. 44:361–365.

    PubMed  Google Scholar 

  • Brandão, M. L., Troncoso, A. C., Souza Sila, M. A., and Huston, J. P. (2003). The relevance of neuronal substrates of defense in the midbrain tectum to anxiety and stress: Empirical and conceptual considerations. Eur. J. Pharmacol. 463:225–233.

    PubMed  Google Scholar 

  • Cammack, J. N., Rakhilin, S. V., and Schwartz, E. A. (1994). A GABA transporter operates asymmetrically and with variable stoichiometry. Neuron 13:949–960.

    PubMed  CAS  Google Scholar 

  • Cammack, J. N., and Schwartz, E. A. (1996). Channel behavior in a gamma-aminobutyrate transporter. Proc. Natl. Acad. Sci. U.S.A. 93:723–727.

    PubMed  CAS  Google Scholar 

  • Cao, Y., Pager, S., and Lester, H. A. (1997). H+ permeation and pH regulation at a mammalian serotonin transporter. J. Neurosci. 17:2257–2266.

    PubMed  CAS  Google Scholar 

  • Cardoso, S. H., Coimbra, N. C., and Brandão, M. L. (1994). Defensive reactions evoked by activation of NMDA receptors in distinct sites of the inferior colliculus. Behav. Brain Res. 63:17–24.

    PubMed  CAS  Google Scholar 

  • Cardoso, S. H., Melo, L. L., Coimbra, N. C., and Brandão, M. L. (1992). Opposite effects of low and high doses of morphine on neuronal substrates of aversion in the inferior colliculus. Behav. Pharmacol. 3:489–495.

    PubMed  CAS  Google Scholar 

  • Cherubini, E., Gaiarsa, J. L., and Ben-Ari, Y. (1991). GABA: An excitatory transmitter in early postnatal life. Trends Neurosci. 14:515–519.

    PubMed  CAS  Google Scholar 

  • Choi, S., and Silverman, R. B. (2002). Inactivation and inhibition of gamma-aminobutyric acid aminotransferase by conformationally restricted vigabatrin analogues. J. Med. Chem. 45:4531–4539.

    PubMed  CAS  Google Scholar 

  • Christensen, H., Fykse, E. M., and Fonnum, F. (1991). Inhibition of γ-aminobutyrate and glycine uptake into synaptic vesicles. Eur. J. Pharmacol. 207:73–79.

    PubMed  CAS  Google Scholar 

  • Christgau, S., Aanstoot, H. J., Schierbeck, H., Bergley, K., Tullin, S., Hejnaes, K., and Baekkeskov, S. (1992). Membrane anchoring of the autoantigen GAD65 to microvesicles in pancreatic beta-cells by palmitoylation in the NH2-terminal domain. J. Cell. Biol. 118:309–320.

    PubMed  CAS  Google Scholar 

  • Ciesielski, L., Sirnler, S., Gensburger, C., Mandel, P., Taillander, G., Benoit-Guyod, J. L., Boucherle, A., Cohen-Addad, C., and Lajzerowicz, J. (1979). GABA transaminase inhibitors. Adv. Exp. Med. Biol. 23:21–41.

    Google Scholar 

  • Clément, Y. (1996). Structural and pharmacological aspects of the GABAA receptor: Involvement in behavioral pathogenesis. J. Physiol. Paris 90:1–13.

    PubMed  Google Scholar 

  • Coimbra, N. C., and Brandão, M. L. (1993). GABAergic nigro-collicular pathways modulate the defensive behavior elicited by midbraim tectum stimulation. Behav. Brain Res. 59:131–139.

    PubMed  CAS  Google Scholar 

  • Coimbra, N. C., Eichenberger, G. C. D., Gorchinski, R. T., and Maisonnette, S. S. (1996). Effects of the blockade of opioid receptor of defensive reactions elicited by electrical stimulation within the deep layers of the superior colliculus and DPAG. Brain Res. 736:348–352.

    PubMed  CAS  Google Scholar 

  • Coimbra, N. C., Leão-Borges, P. C., and Brandão, M. L. (1989). GABAergic fibers from substantia nigra, pars reticulata, modulate escape behaviour induced by midbrain central gray stimulation. Braz. J. Med. Biol. Res. 22:111–114.

    PubMed  CAS  Google Scholar 

  • Coimbra, N. C., Osaki, M. Y., Eichenberger, G. C. D., Ciscato, J. G., Jr., Jucá, C. E. B., and Biojone,C. R. (2000). Effects of opioid receptor blockade on defensive behavior elicited by electrical stimulation of the aversive substrates of the inferior colliculus in Rattus norvegicus (Rodentia, Muridae). Psychopharmacology 152:422–430.

    PubMed  CAS  Google Scholar 

  • Condie, B. G., Bain, G., and Gottlieb, D. I. (1997). Cleft palate in mice with a targeted mutation in the gamma-aminobutyric acid-producing enzyme glutamic acid decarboxylase 67. Proc. Natl. Acad. Sci. U.S.A. 94:11451–11455.

    PubMed  CAS  Google Scholar 

  • Correa, M., Mingote, S., Betz, A., Wisniecki, A., and Salamone, J. D. (2003). Substantia nigra, pars reticulata GABA is involved in the regulation of operant lever pressing: Pharmacological and microdialysis studies. Neuroscience 119:759–766.

    PubMed  CAS  Google Scholar 

  • Cousins, M. S., Roberts, D. C., and De Wit, H. (2002). GABAB receptor agonists for the treatment of drug addiction: A review of recent findings. Drug Alcohol Depend. 65:209–220.

    PubMed  CAS  Google Scholar 

  • Coyle, J. T. (2004). The GABA-glutamate connection in schizophrenia: which is the proximate cause? Biochem. Pharmacol. 68:1507–1514.

    PubMed  CAS  Google Scholar 

  • Crestani, F., Löw, K., Keist, R., Mandelli, M., Möhler, H., and Rudolph, U. (2001). Molecular targets for the myorelaxant action of diazepam. Mol. Pharmacol. 59:442–445.

    PubMed  CAS  Google Scholar 

  • Crestani, F., Martin, J. R., Möhler, H., and Rudolph, U. (2000). Mechanism of action of the hypnotic zolpidem in vivo. Br. J. Pharmacol. 131:1251–1254.

    PubMed  CAS  Google Scholar 

  • Cutting, G. R., Lu, L., O’Hara, B., Kasch, L. M., Montrose-Rafizadeh, C., Donovan, D. M., Shimada, S.,Antonarakis, S. E., Guggino, W. B., Uhl, G. R., and Kazazian, H. H. (1991). Cloning of the GABA[rho]1 cDNA: A novel GABA subunit highly expressed in the retina. Proc. Natl. Acad. Sci. U.S.A. 88:2673–2677.

    PubMed  CAS  Google Scholar 

  • Czuczwar, S. J., and Patsalos, P. N. (2001). The new generation of GABA enhancers. Potential in the treatment of epilepsy. CNS Drugs 15:339–350.

    PubMed  CAS  Google Scholar 

  • Davies, M. (2003). The role of GABAA receptors in mediating the effects of alcohol in the central nervous system. J. Psychiatry Neurosci. 28:263–274.

    PubMed  Google Scholar 

  • Di Chiara, G., Porceddu, M. L., Moreli, M., Mulas, M. L., and Gessa, G. L. (1979). Evidence for a GABAergic projection from the substantia nigra to the ventro-medial thalamus and to the superior colliculus of the rat. Brain Res. 176:273–284.

    PubMed  CAS  Google Scholar 

  • Dinkel, K., Meinck, H. M., Jury, K. M., Karges, W., and Richter, W. (1998). Inhibition of gamma-aminobutyric acid synthesis by glutamic acid decarboxylase autoantibodies in stiff-man syndrome. Ann. Neurol. 44:194–201.

    PubMed  CAS  Google Scholar 

  • Dinkel, K., Rickert, M., Moller, G., Adamski, J., Meinck, H. M., and Richter, W. (2002). Stiff-man syndrome: Identification of 17 beta-hydroxysteroid dehydrogenase type 4 as a novel 80-kDa antineuronal antigen. J. Neuroimmunol. 130:184–193.

    PubMed  CAS  Google Scholar 

  • Dodd, P. R., Watson, W. E., Morrison, M. M., Johnston, G. A., Bird, E. D., Cowburn, R. F., and Hardy, J. A. (1989). Uptake of gamma-aminobutyric acid and L-glutamic acid by synaptosomes from postmortem human cerebral cortex: Multiple sites, sodium dependence and effect of tissue preparation. Brain Res. 490:320–331.

    PubMed  CAS  Google Scholar 

  • Dolphin, A. C., and Scott, R. H. (1987). Calcium channel currents and their inhibition by (—)-baclofen in rat sensory neurones: Modulation by guanine nucleotides. J. Physiol. (Lond.) 386:1–17.

    CAS  Google Scholar 

  • Eichenberger, G. C. D., Ribeiro, S. J., Osaki, M. Y., Maruoka, R. Y., Resende, G. C. C., Castellan-Baldan, L., Corrêa, S. A. L., Da Silva, L. A., and Coimbra, N. C. (2002). Neuroanatomical and psychopharmacological evidences for interactions between opioid and GABAergic neural pathways in the modulation of the defensive behavior elicited by electrical and chemical stimulation of the dorsal mesencephalon. Neuropharmacology 42:48–59.

    PubMed  CAS  Google Scholar 

  • Enz, R., and Cutting, G. R. (1998). Molecular composition of GABAC receptors. Vision Res. 38:1431–1441.

    PubMed  CAS  Google Scholar 

  • Faingold, C. L., Gehlbach, C., and Caspary, D. M. (1983). Effects of GABA on inferior colliculus neuronal responses to accoustic stimuli. Soc. Neurosci. Abstr. 11:247.

    Google Scholar 

  • Faingold, C. L., N’Gouerno, P., and Riaz, A. (1998). Ethanol and neurotransmitter interactions–-From molecular to integrative effects. Prog. Neurobiol. 55:509–535.

    PubMed  CAS  Google Scholar 

  • Fallon, J. H., and Laughlin, S. E. (1995). Substantia nigra. In Paxinos, G. (ed.), The Rat Nervous System, Academic Press, San Diego, CA, pp. 215–237.

    Google Scholar 

  • Finn, M., Mayorga, A. J., Conlan, A., and Salamone, J. D. (1997). Involvement of pallidal and nigral GABA mechanisms in the generation of tremulous jaw movements in rats. Neuroscience 80:535–544.

    PubMed  CAS  Google Scholar 

  • Frolund, B., Ebert, B., Kristiansen, U., Liljefors, T., and Krogsgaard-Larsen, P. (2002). GABA(A) receptor ligands and their therapeutic potentials. Curr. Top. Med. Chem. 2:817–832.

    PubMed  CAS  Google Scholar 

  • Fu, M., and Silverman, R. B. (1999). Isolation and characterization of the product of inactivation of gamma-aminobutyric acid aminotransferase by gabaculine. Bioorg. Med. Chem. 7:1581–1590.

    PubMed  CAS  Google Scholar 

  • Gadea, A., and Lopez-Colomé, A. M. (2001). Glial transporters for glutamate, glycine, and GABA: II. GABA transporters. J. Neurosci. Res. 63:461–468.

    PubMed  CAS  Google Scholar 

  • Gahwiler, B. H., and Brown, D. A. (1985). GABAB-receptor-activated K+ current in voltage-clamped CA3 pyramidal cells in hippocampal cultures. Proc. Natl. Acad. Sci. U.S.A. 82:1558–1562.

    PubMed  CAS  Google Scholar 

  • Garret, M., Bascles, L., Boue-Grabot, E., Sartor, P., Charron, G., Bloch, B., and Margolskee, R. F. (1997). An mRNA encoding a putative GABA-gated chloride channel is expressed in the human cardiac conduction system. J. Neurochem. 68:1382–1389.

    Article  PubMed  CAS  Google Scholar 

  • Gaspary, H. L., Wang, W., and Richerson, G. B. (1998). Carrier-mediated GABA release activates GABA receptors on hippocampal neurons. J. Neurophysiol. 80:270–281.

    PubMed  CAS  Google Scholar 

  • Gerfen, C. R. (1992). The neostriatal mosaic: Multiple levels of organization in the basal ganglia. Annu. Rev. Neurosci. 15:285–320.

    PubMed  CAS  Google Scholar 

  • Gibson, K. M., Christensen, E., Jakobs, C., Fowler, B., Clarke, M. A., Hammersen, G., Raab, K., Kobori, J., Moosa, A., Vollmer, B., Rossier, E., Iafolla, A. K., Matern, D., Brouwer, O. F., Finkelstein, J., Aksu, F., Weber, H. P., Bakkeren, J. A., Gabreels, F. J., Bluestone, D., Barron, T. F., Beauvais, P., Rabier, D., Santos, C., Umansky, R., and Lehnert, W. (1997). The clinical phenotype of succinic semialdehyde dehydrogenase deficiency (4-hydroxybutyric aciduria): Case reports of 23 new patients. Pediatrics 99:567–574.

    PubMed  CAS  Google Scholar 

  • Gilman, T. T., and Marcuse, F. (1949). Animal hypnosis. Psychol. Bull. 46:151–165.

    PubMed  CAS  Google Scholar 

  • Goldsmith, J. D., Kujawa, S. G., McLaren, J. D., and Bledsoe, S. C., Jr. (1995). In vivo release of neuroactive amino acids from the inferior colliculus of the guinea pig using brain microdialysis. Hear. Res. 83:80–88.

    PubMed  CAS  Google Scholar 

  • Graeff, F. G. (1990). Brain defense systems and anxiety. In Roth, M., Burrows, G. D., and Noyes, R. (eds.), Handbook of Anxiety, Vol. 3, Elsevier Science, Amsterdam, pp. 307–354.

    Google Scholar 

  • Griebel, G., Perrault, G., Simiand, J., Cohen, C., Granger, P., Depoortere, H., Francon, D., Avenet, P., Schoemaker, H., Evanno, Y., Sevrin, M., George, P., and Scatton, B. (2003). SL651498, a GABAA receptor agonist with subtype-selective efficacy, as a potential treatment for generalized anxiety disorder and muscle spasms. CNS Drug Rev. 9:3–20.

    Article  PubMed  CAS  Google Scholar 

  • Hanania, T., and Johnson, K. M. R (1998). Regulation of neurotransmitter release by endogenous nitric oxide in striatal slices. Eur. J. Pharmacol. 359:111–117.

    PubMed  CAS  Google Scholar 

  • Harayama, N., Shibuya, I., Tanaka, K., Kabashima, N., Ueta, Y., and Yamashita, H. (1998). Inhibition of N- and P/Q-type calcium channels by postsynaptic GABAB receptor activation in rat supraoptic neurones. J. Physiol. (Lond.) 509:371–383.

    CAS  Google Scholar 

  • Hendry, S. H., Schwark, H. D., Jones, E. G., and Yan, J. (1987). Numbers and proportions of GABA-immunoreactive neurons in different areas of monkey cerebral cortex. J. Neurosci. 7:1503–1519.

    PubMed  CAS  Google Scholar 

  • Hess, W. R., and Brügger, M. (1943). Das subkortikale zentrum der affectiven abwerreaktion. Helv. Physiol. Pharmacol. Acta 1:33–52.

    Google Scholar 

  • Hill, D. R., and Bowery, N. G. (1981). 3H-baclofen and 3H-GABA bind to bicuculline-insensitive GABAB sites in rat brain. Nature 290:149–152.

    PubMed  CAS  Google Scholar 

  • Hosak, L., and Libiger, J. (2002). Antiepileptic drugs in schizophrenia: A review. Eur. Psychiatry 17:371–378.

    PubMed  CAS  Google Scholar 

  • Huff, R. A., Vaughan, R. A., Kuhar, M. J., and Uhl, G. R. (1997). Phorbol esters increase dopamine transporter phosphorylation and decrease transport Vmax. J. Neurochem. 68:225–232.

    Article  PubMed  CAS  Google Scholar 

  • Hunsperger, R. W. (1956). Affektreaktionen auf elektrische Reizung in Himstamm der Katze. Helv. Physiol. Pharmacol. Acta 14:70–92.

    PubMed  CAS  Google Scholar 

  • Iversen, L. L., and Kelly, J. S. (1975). Uptake and metabolism of gamma-aminobutyric acid by neurones and glial cells. Biochem. Pharmacol. 24:933–938.

    PubMed  CAS  Google Scholar 

  • Iversen, L. L., and Neal, M. J. (1968). The uptake of [3H]GABA by slices of rat cerebral cortex. J. Neurochem. 15:1141–1149.

    PubMed  CAS  Google Scholar 

  • Jeon, S. G., Bahn, J. H., Jang, J. S., Jang, S. H., Lee, B. R., Lee, K. S., Park, J., Kang, T. C., Won, M. H., Kim, H. B., Kwo, O. S., Cho, S. W., and Choi, S. Y. (2001). Molecular cloning and functional expression of bovine brain GABA transaminase. Mol. Cells. 12:91–96.

    PubMed  CAS  Google Scholar 

  • Johnston, G. A., Chebib, M., Hanrahan, J. R., and Mewett, K. N. (2003). GABA(C) receptors as drug targets. Curr. Drug Target CNS Neurol. Disord. 2:260–268.

    CAS  Google Scholar 

  • Johnston, G. A. R. (1994). GABAC receptors. Prog. Brain Res. 100:61–65.

    Article  PubMed  CAS  Google Scholar 

  • Johnston, G. A. R. (1996a). GABAA receptor pharmacology. Pharmacol. Ther. 69:173–198.

    CAS  Google Scholar 

  • Johnston, G. A. R. (1996b). GABAC receptors: Relatively simple transmitter-gated ion channels? TiPS 17:319–323.

    CAS  Google Scholar 

  • Johnston, G. A. R., Curtis, D. R., Beart, P. M., Game, C. J. A., McCulluch, R. M., and Twitchin, B. (1975). Cis- and trans-4-aminocrotonic acid as GABA analogues of restricted conformation. J. Neurochem. 24:157–160.

    PubMed  CAS  Google Scholar 

  • Jonas, P., Bischofberger, J., and Sandkuhler, J. (1998). Correlease of two fast neurotransmitters at a central synapse. Science 281:419–424.

    PubMed  CAS  Google Scholar 

  • Jones, K. A., Tamm, J. A., Craig, D. A., Yao, W.-J., and Panico, R. (2000). Signal transduction by GABAB receptor heterodimers. Neuropsychopharmacology 23:S41–S49.

    PubMed  CAS  Google Scholar 

  • Jones-Davis, D. M., and Macdonald, R. L. (2003). GABAA receptor function and pharmacology in epilepsy and status epilepticus. Curr. Opin. Pharmacol. 3:12–18.

    PubMed  CAS  Google Scholar 

  • Jung, M. J., Lippert, B., Metcalf, B. W., Bohlen, P., and Schechter, P. J. (1977). Gamma-vinyl GABA (4-amino-hex-5-enoic acid), a new selective irreversible inhibitor of GABA-T: Effects on brain GABA metabolism in mice. J. Neurochem. 29:797–802.

    PubMed  CAS  Google Scholar 

  • Jursky, F., Tamura, S., Tamura, A., Mandiyan, S., Nelson, H., and Nelson, N. (1994). Structure, function and brain localization of neurotransmitter transporters. J. Exp. Biol. 196:283–295.

    PubMed  CAS  Google Scholar 

  • Kavanaugh, M. P., Arriza, J. L., North, R. A., and Amara, S. G. (1992). Electrogenic uptake of gamma-aminobutyric acid by a cloned transporter expressed in Xenopus oocytes. J. Biol. Chem. 267:22007–22009.

    PubMed  CAS  Google Scholar 

  • Kerr, D. I., and Ong, J. (1995). GABAB receptors. Pharmacol. Ther. 67:187–246.

    PubMed  CAS  Google Scholar 

  • Kha, H. T., Finkelstein, D. I., Tomas, D., Drago, J., Pow, D. V., and Horne, M. K. (2001). Projections from the substantia nigra, pars reticulata to the motor thalamus of the rat: Single axon reconstructions and immunohistochemical study. J. Comp. Neurol. 440:20–30.

    PubMed  CAS  Google Scholar 

  • Klepner, C. A., Lippa, A. S., Benson, D. I., Sano, M. C., and Beer, B. (1979). Resolution of two biochemically and pharmacologically distinct benzodiazepine receptors. Pharmacol. Biochem. Behav. 11:457–462.

    PubMed  CAS  Google Scholar 

  • Koch, M., Frendt, M., and Kretschemer, B. D. (2000). Role of the substantia nigra, pars reticulata in sensorimotor gating, measured by prepulse inhibition of startle in rats. Behav. Brain Res. 117:153–162.

    PubMed  CAS  Google Scholar 

  • Korpi, E. R., Grunder, G., and Luddens, H. (2002). Drug interactions at GABA(A) receptors. Prog. Neurobiol. 67:113–159.

    PubMed  CAS  Google Scholar 

  • Kriem, B., Cagniard, B., Bouquet, C., Rostain, J. C., and Abraini, J. H. (1998). Modulation by GABA transmission in the substantia nigra compacta and reticulata of locomotor activity in rats exposed to high pressure. Neuroreport 9:1343–1347.

    PubMed  CAS  Google Scholar 

  • Krnjevic, K. (1974). Chemical nature of synaptic transmission in vertebrates. Physiol. Rev. 54:418–540.

    CAS  Google Scholar 

  • Krogsgaard-Larsen, P., Falch, E., Larsson, O. M., and Schousboe, A. (1987). GABA uptake inhibitors: Relevance to antiepileptic drug research. Epilepsy Res. 1:77–93.

    PubMed  CAS  Google Scholar 

  • Krogsgaard-Larsen, P., Frolund, B. F., and Falch, E. (1998). Inhibitors of gamma-aminobutyric acid transport as experimental tools and therapeutic agents. Methods Enzymol. 296:165–175.

    Article  PubMed  CAS  Google Scholar 

  • Krogsgaard-Larsen, P., Frolund, B., and Frydenvang, K. (2000). GABA uptake inhibitors. Design, molecular pharmacology and therapeutic aspects. Curr. Pharm. Des. 6:1193–1209.

    PubMed  CAS  Google Scholar 

  • Krogsgaard-Larsen, P., and Johnston, G. A. (1975). Inhibition of GABA uptake in rat brain slices by nipecotic acid, various isoxazoles and related compounds. J. Neurochem. 25:797–802.

    PubMed  CAS  Google Scholar 

  • Krogsgaard-Larsen, P., Schultz, B., Mikkelsen, H., Aaes-Jorgensen, T., and Bogeso, K. P. (1981). THIP, isoguvacine, isoguvacine oxide, and related GABA agonists. Adv. Biochem. Psychopharmacol. 29:69–76.

    PubMed  CAS  Google Scholar 

  • Kudo, T., and Wada, J. A. (1990). The effect of unilateral claustral lesion on intermittent light stimulation induced seizure in D, L-allylglycine treated cats. Jpn. J. Psychiatry Neurol. 44:436–437.

    PubMed  CAS  Google Scholar 

  • Kusama, T., Spivak, C. E., Whiting, P., Dawson, V. L., Schaeffer, J. C., and Uhl, G. R. (1993). Pharmacology of GABA rho 1 and GABA alpha/beta receptors expressed in Xenopus oocytes and COS cells. Br. J. Pharmacol. 109:200–206.

    PubMed  CAS  Google Scholar 

  • Leite-Panissi, C. R. A., Coimbra, N. C., and Menescal-de-Oliveira, L. (2003). The cholinergic stimulation of the central amygdala modifying the tonic immobility response and antinociception in guinea pigs depends on the ventrolateral periaqueductal gray. Brain Res. Bull. 60:167–178.

    PubMed  CAS  Google Scholar 

  • Leite-Panissi, C. R. A., and Menescal-de-Oliveira, L. (2002). Central nucleus of the amygdala and tonic immobility in guinea pigs. Brain Res. Bull. 58:13–19.

    PubMed  CAS  Google Scholar 

  • Levi, G., and Raiteri, M. (1993). Carrier-mediated release of neurotransmitters. Trends Neurosci. 16:415–419.

    PubMed  CAS  Google Scholar 

  • Li, Y., Evans, M. S., and Faingold, C. L. (1999). Synaptic response patterns of neurons in the cortex of the rat inferior colliculus. Hear. Res. 137:15–28.

    PubMed  CAS  Google Scholar 

  • Liu, Q. R., López-Corcuera, B., Mandiyan, S., Nelson, H., and Nelson, N. (1993). Molecular characterization of four pharmacologically distinct gamma-aminobutyric acid transporters in mouse brain. J. Biol. Chem. 268:2106–2112.

    PubMed  CAS  Google Scholar 

  • Lloyd, K. G., Morselli, P. L., and Bartholini, G. (1987). GABA and affective disorders. Med. Biol. 65:159–165.

    PubMed  CAS  Google Scholar 

  • López-Corcuera, B., Liu, Q. R., Mandiyan, S., Nelson, H., and Nelson, N. (1992). Expression of a mouse brain cDNA encoding novel gamma-aminobutyric acid transporter. J. Biol. Chem. 267:17491–17493.

    PubMed  Google Scholar 

  • Loscher, W. (1980). Effect of inhibitors of GABA transaminase on the synthesis, binding, uptake, and metabolism of GABA. J. Neurochem. 34:1603–1608.

    PubMed  CAS  Google Scholar 

  • Loscher, W. (1985). Anticonvulsant action in the epileptic gerbil of novel inhibitors of GABA uptake. Eur. J. Pharmacol. 110:103–108.

    PubMed  CAS  Google Scholar 

  • Loscher, W., Honack, D., and Gramer, M. (1989). Use of inhibitors of gamma-aminobutyric acid (GABA) transaminase for the estimation of GABA turnover in various brain regions of rats: A reevaluation of aminooxyacetic acid. J. Neurochem. 53:1737–1750.

    PubMed  CAS  Google Scholar 

  • Löw, K., Crestani, F., Keist, R., Benke, D., Brunig, I., Benson, J. A., Fritschy, J. M., Rulicke, T.,Bluethmann, H., Möhler, H., and Rudolph, U. (2000). Molecular and neuronal substrate for the selective attenuation of anxiety. Science 290:131–134.

    PubMed  Google Scholar 

  • Lu, L., and Huang, Y. (1998). Separate domains for desensitization of GABA rho 1 and beta 2 subunits expressed in Xenopus oocytes. J. Membr. Biol. 164:115–124.

    PubMed  CAS  Google Scholar 

  • Luddens, H., Korpi, E. R., and Seeburg, P. H. (1995). GABAA/benzodiazepine receptor heterogeneity: Neurophysiological implications. Neuropharmacology 34:245–254.

    PubMed  CAS  Google Scholar 

  • Mabjeesh, N. J., Frese, M., Rauen, T., Jeserich, G., and Kanner, B. I. (1992). Neuronal and glial gamma-aminobutyric acid+ transporters are distinct proteins. FEBS Lett. 299:99–102.

    PubMed  CAS  Google Scholar 

  • Machiyama, Y., Balazs, R., Hammond, B. J., Julian, T., and Richter, D. (1970). The metabolism of gamma-aminobutyrate and glucose in potassium ion-stimulated brain tissue in vitro. Biochem. J. 116:469–481.

    PubMed  CAS  Google Scholar 

  • Mager, S., Kleinberger-Doron, N., Keshet, G. I., Davidson, N., Kanner, B. I., and Lester, H. A. (1996). Ion binding and permeation at the GABA transporter GAT1. J. Neurosci. 16:5405–5414.

    PubMed  CAS  Google Scholar 

  • Maisonnette, S. S., Kawasaki, M. C., Coimbra, N. C., and Brandão, M. L. (1996). Effects of lesions of amygdaloid nuclei and substantia nigra on aversive responses induced by electrical stimulation of the inferior colliculus. Brain Res. Bull. 40:93–98.

    PubMed  CAS  Google Scholar 

  • Maitre, M. (1997). The gamma-hydroxybutyrate signalling system in brain: Organization and functional implications. Prog. Neurobiol. 51:337–361.

    PubMed  CAS  Google Scholar 

  • Martin, D. L., and Rimvall, K. (1993). Regulation of gamma-aminobutyric acid synthesis in the brain. J. Neurochem. 60:395–407.

    PubMed  CAS  Google Scholar 

  • Mehta, A. K., and Ticku, M. K. (1999). An update on GABAA receptors. Brain Res. Rev. 29:196–217.

    PubMed  CAS  Google Scholar 

  • Meldrum, B. S., Menini, C., Naquet, R., Laurent, H., and Stutzmann, J. M. (1979). Proconvulsant, convulsant and other actions of the D- and L-stereoisomers of allylglycine in the photosensitive baboon, Papio papio. Electroencephalogr. Clin. Neurophysiol. 47:383–395.

    PubMed  CAS  Google Scholar 

  • Melo, L. L., Brandão, M. L., Graeff, F. G., and Sandner, G. (1997). Bilateral ablation of the auditory cortex in the rats alters conditioned emotional suppression to a sound as appraised through a latent inhibition study. Behav. Brain Res. 88:59–65.

    PubMed  CAS  Google Scholar 

  • Melo, L. L., Cardoso, S. H., and Brandão, M. L. (1992). Antiaversive action of benzodiazepines on escape behavior induced by electrical stimulation of the inferior colliculus. Physiol. Behav. 51:557–562.

    PubMed  CAS  Google Scholar 

  • Menescal-de-Oliveira, L., and Hoffmann, A. (1993). The parabrachial region as a possible region modulating simultaneously pain and tonic immobility. Behav. Brain Res. 56:127–132.

    PubMed  CAS  Google Scholar 

  • Metcalf, B. W. (1979). Inhibitors of GABA metabolism. Biochem. Pharmacol. 28:1705–1712.

    PubMed  CAS  Google Scholar 

  • Mihic, S. J. (1999). Acute effects of ethanol on GABAA and glycine receptor function. Neurochem. Int. 35:115–123.

    PubMed  CAS  Google Scholar 

  • Milbrandt, J. C., Albin, R. L., Turgeon, S. M., and Caspary, D. M. (1996). GABA-A receptor binding in the aging rat inferior colliculus. Neuroscience 73:449–458.

    PubMed  CAS  Google Scholar 

  • Millan, M. J. (2003). The neurobiology and control of anxious states. Prog. Neurobiol. 70:83–244.

    PubMed  CAS  Google Scholar 

  • Minelli, A., Brecha, N. C., Karschin, C., DeBiasi, S., and Conti, F. (1995). GAT-1, a high-affinity GABA plasma membrane transporter, is localized to neurons and astroglia in the cerebral cortex. J. Neurosci. 15:7734–7746.

    PubMed  CAS  Google Scholar 

  • Möhler, H., Fritschy, J. M., and Rudolph, U. (2002). A new benzodiazepine pharmacology. J. Pharmacol. Exp. Ther. 300:2–8.

    PubMed  Google Scholar 

  • Monassi, C. R., Leite-Panissi, C. R., and Menescal-de-Oliveira, L. (1999). Ventrolateral periaqueductal gray matter and the control of tonic immobility. Brain Res. Bull. 50:201–208.

    PubMed  CAS  Google Scholar 

  • Moscowitz, J. A., and Cutler, R. W. (1980). Bidirectional movement of gamma-aminobutyric acid in rat spinal cord slices. J. Neurochem. 35:1394–1399.

    PubMed  CAS  Google Scholar 

  • Nelson, N. (1998). The family of Na+/Cl neurotransmitter transporters. J. Neurochem. 71:1785–1803.

    Article  PubMed  CAS  Google Scholar 

  • Ng, T. K., and Yung, K. K. (2000). Distinct cellular distribution of GABA (B) R1 and GABA (A) alpha 1 receptor immunoreactivity in the rat substantia nigra. Neuroscience 99:65–76.

    PubMed  CAS  Google Scholar 

  • Nicholls, D., and Attwell, D. (1990). The release and uptake of excitatory amino acids. Trends Pharmacol. Sci. 11:462–468.

    PubMed  Google Scholar 

  • Nicholls, D. G., Sihra, T. S., and Sanchez-Prieto, J. (1987). Calcium-dependent and -independent release of glutamate from synaptosomes monitored by continuous fluorometry. J. Neurochem. 49:50–57.

    PubMed  CAS  Google Scholar 

  • Nicoll, R. A., and Malenka, R. C. (1998). A tale of two transmitters. Science 281:360–361.

    PubMed  CAS  Google Scholar 

  • Nielsen, M., and Braestrup, C. (1980). Ethyl-beta-carboline-3-carboxylate shows differential benzodiazepine receptors interaction in vitro. Nature 286:606–607.

    PubMed  CAS  Google Scholar 

  • Olsen, R. W., and DeLorey, T. M. (1999). GABA and glycine. In Siegel, G. J. (ed.), Basic Neurochemistry: Molecular, Cellular and Medical Aspects, Lippincott Williams & Wilkins, Philadelphia, pp. 335–346.

    Google Scholar 

  • Osaki, M. Y., Castellan-Baldan, L., Calvo, F., Carvalho, A. D., Felippotti, T. T., DeOliveira, R., Ubiali,W. A., Paschoalin-Maurin, T., Elias-Filho, D. H., Motta, V., DaSilva, L. A., and Coimbra, N. C. (2003). Neuroanatomical and neuropharmacological study of opioid pathways in the mesencephalic tectum: Effect of μ1-opioid and κ-opioid receptor blockade on escape behavior induced by electrical stimulation of the inferior colliculus. Brain Res. 992:179–192.

    PubMed  CAS  Google Scholar 

  • Palfreyman, M. G., Schechter, P. J., Buckett, W. R., Tell, G. P., and Koch-Weser, J. (1981). The pharmacology of GABA-transaminase inhibitors. Biochem. Pharmacol. 30:817–824.

    PubMed  CAS  Google Scholar 

  • Pandossio, J. E., and Brandão, M. L. (1999). Defensive reactions are counteracted by midazolam and muscimol and elicited by activation of glutamate receptors in the inferior colliculus of rats. Psychopharmacology 142:360–368.

    PubMed  CAS  Google Scholar 

  • Parent, A., and Hazrati, L. N. (1993). Common structural organization of two output nuclei of primate basal ganglia. Trends Neurosci. 16:308–309.

    Google Scholar 

  • Park, T. J., and Pollak, G. D. (1993). GABA shapes sensitivity to interaural intensity disparities in the mustache bat’s inferior colliculus: Implications for encoding sound location. J. Neurosci. 13:2050–2067.

    PubMed  CAS  Google Scholar 

  • Pin, J. P., and Bockaert, J. (1989). Two distinct mechanisms, differentially affected by excitatory amino acids, trigger GABA release from fetal mouse striatal neurons in primary culture. J. Neurosci. 9:648–656.

    PubMed  CAS  Google Scholar 

  • Piqueras, L., and Martinez, V. (2004). Peripheral GABAB agonists stimulate gastric acid secretion in mice. Br. J. Pharmacol. 142:1038–1048.

    PubMed  CAS  Google Scholar 

  • Polenzani, L., Woodward, R. M., and Miledi, R. (1991). Expression of mammalian gamma-aminobutyric acid receptors with distinct pharmacology in Xenopus oocytes. Proc. Natl. Acad. Sci. U.S.A. 88:4318–4322.

    PubMed  CAS  Google Scholar 

  • Qume, M., and Fowler, L. J. (1997). Effect of chronic treatment with the GABA transaminase inhibitors gamma-vinyl GABA and ethanolamine O-sulphate on the in vitro GABA release from rat hippocampus. Br. J. Pharmacol. 122:539–545.

    PubMed  CAS  Google Scholar 

  • Radian, R., Ottersen, O. P., Storm-Mathisen, J., Castel, M., and Kanner, B. I. (1990). Immunocytochemical localization of the GABA transporter in rat brain. J. Neurosci. 10:1319–1330.

    PubMed  CAS  Google Scholar 

  • Rando, R. R., and Bangerter, F. W. (1977). The in vivo inhibition of GABA-transaminase by gabaculine. Biochem. Biophys. Res. Commun. 76:1276–1281.

    PubMed  CAS  Google Scholar 

  • Reetz, A., Solirnema, M., Matteoli, M., Folli, F., Takei, K., and De Carnilli, P. (1991). GABA and pancreatic beta-cells: Colocalization of glutamic acid decarboxylase (GAD) and GABA with synaptic-like microvesicles suggests their role in GABA storage and secretion. EMBO J. 10:1275–1284.

    PubMed  CAS  Google Scholar 

  • Reynolds, J. N., Prasad, A., and MacDonald, J. F. (1992). Ethanol modulation of GABA receptor-activated Cl currents in neurons of the chick, rat and mouse central nervous system. Eur. J. Pharmacol. 224:173–181.

    PubMed  CAS  Google Scholar 

  • Ribak, C. E., Tong, W. M., and Brecha, N. C. (1996). GABA plasma membrane transporters, GAT-1 and GAT-3, display different distributions in the rat hippocampus. J. Comp. Neurol. 367:595–606.

    PubMed  CAS  Google Scholar 

  • Roberts, E. (1986a). GABA: The road to neurotransmitter status. In Olsen, R. W., and Venter, C. J. (eds.), Benzodiazepine/GABA Receptors and Chloride Channels: Structural and Functional Properties, Wiley, New York, pp. 1–39.

    Google Scholar 

  • Roberts, E. (1986b). What do GABA neurons really do? They make possible variability generation in relation to demand. Exp. Neurol. 93:279–290.

    CAS  Google Scholar 

  • Roberts, E., and Frankel, S. (1950). Gamma-aminobutyric acid in brain: Its formation from glutamic acid. J. Biol. Chem. 187:55–63.

    PubMed  CAS  Google Scholar 

  • Robinson, M. B., and Dowd, L. A. (1997). Heterogeneity and functional properties of subtypes of sodium-dependent glutamate transporters in the mammalian central nervous system. Adv. Pharmacol. 37:69–115.

    Article  PubMed  CAS  Google Scholar 

  • Rodgers-Neame, N. T., Isenberg, K. E., and Zorumski, C. F. (1995). Ethanol augments GABA-induced chloride currents in cultured hippocampal neurons. Soc. Neurosci. Abstr. 21:1814.

    Google Scholar 

  • Romano-Silva, M. A., Ribeiro-Santos, R., Ribeiro, A. M., Gómez, M. V., Diniz, C. R., Cordeiro, M. N., and Brammer, M. J. (1993). Rat cortical synaptosomes have more than one mechanism for Ca2+ entry linked to rapid glutamate release: Studies using the Phoneutria nigriventer toxin PhTX2 and potassium depolarization. Biochem. J. 296:313–319.

    PubMed  CAS  Google Scholar 

  • Rudolph, U., Crestani, F., Benke, D., Brunig, I., Benson, J. A., Fritschy, J. M., Martin, J. R., Bluethmann, H., and Möhler, H. (1999). Benzodiazepine actions mediated by specific γ-aminobutyric acidA receptor subtypes. Nature 401:796–800.

    PubMed  CAS  Google Scholar 

  • Sanacora, G., Gueorguieva, R., Epperson, C. N., Wu, Y. T., Appel, M., Rothman, D. L., Krystal, J. H., and Mason, G. F. (2004). Subtype-specific alterations of gamma-aminobutyric acid and glutamate in patients with major depression. Arch. Gen. Psychiatry 61:705–713.

    PubMed  CAS  Google Scholar 

  • Sargent, A. B., and Eberhardt, L. E. (1975). Death feigning by ducks in response to predation by red foxes (Volpes fulva). Am. Midl. Natr. 94:108–119.

    Google Scholar 

  • Sarup, A., Larsson, O. M., Bolving, T., Frolund, B., Krogsgaard-Larsen, P., and Schousboe, A. (2003a). Effects of 3-hydroxy-4-amino-4,5,6,7-tetrahydro-1,2-benzisoxazole (exo-THPO) and its N-substituted analogs on GABA transport in cultured neurons and astrocytes and by the four cloned mouse GABA transporters. Neurochem. Int. 43:445–451.

    CAS  Google Scholar 

  • Sarup, A., Larsson, O. M., and Schousboe, A. (2003b). GABA transporters and GABA-transaminase as drug targets. Curr. Drug Target CNS Neurol. Disord. 2:269–277.

    CAS  Google Scholar 

  • Scatton, B., Depoortere, H., George, P., Sevrin, M., Benavides, J., Schoemaker, H., and Perrault, G. (2000). Selectivity for GABAA receptor α subunits as a strategy for developing hypnoselective and anxioselective drugs. Int. J. Neuropsychopharmacol. 3:S41–S43.

    Google Scholar 

  • Schloss, P., Mayser, W., and Betz, H. (1992). Neurotransmitter transporters. A novel family of integral plasma membrane proteins. FEBS Lett. 307:76–80.

    PubMed  CAS  Google Scholar 

  • Schmitt, P., Carrive, P., DiScala, G., Jenck, F., Brandão, M. L., Bagri, A., Moreau, J. L., and Sandner, G. (1986). A neuropharmacological study of the periventricular neural substrate involved in flight. Behav. Brain Res. 22:181–190.

    PubMed  CAS  Google Scholar 

  • Schousboe, A. (2000). Pharmacological and functional characterization of astrocytic GABA transport: A short review. Neurochem. Res. 25:1241–1244.

    PubMed  CAS  Google Scholar 

  • Schousboe, A., Larsson, O. M., Hertz, L., and Krogsgaard-Larsen, P. (1981). Heterocyclic GABA analogues as selective inhibitors of astroglial GABA uptake. Adv. Biochem. Psychopharmacol. 29:135–141.

    PubMed  CAS  Google Scholar 

  • Schousboe, A., Larsson, O. M., Wood, J. D., and Krogsgaard-Larsen, P. (1983). Transport and metabolism of gamma-aminobutyric acid in neurons and glia: Implications for epilepsy. Epilepsia 24:531–538.

    PubMed  CAS  Google Scholar 

  • Schuler, V., Luscher, C., Blanchet, C., Klix, N., Sansig, G., Klebs, K., Schmutz, M., Heid, J., Gentry, C., Urban, L., Fox, A., Spooren, W., Jaton, A. L., Vigouret, J., Pozza, M., Kelly, P. H., Mosbacher, J., Froestl, W., Kaslin, E., Korn, R., Bischoff, S., Kaupmann, K., van der Putten, H., and Bettler, B. (2001). Epilepsy, hyperalgesia, impaired memory, and loss of pre- and postsynaptic GABA(B) responses in mice lacking GABA(B(1)). Neuron 31:47–58.

    PubMed  CAS  Google Scholar 

  • Shank, R. P., Gardocki, J. F., Vaught, J. L., Davis, C. B., Schupsky, J. J., Raffa, R. B., Dodgson, S. J., Nortey, S. O., and Maryanoff, B. E. (1994). Topiramate: Preclinical evaluation of structurally novel anticonvulsant. Epilepsia 35:450–460.

    PubMed  CAS  Google Scholar 

  • Sherif, F. M., and Ahmed, S. S. (1995). Basic aspects of GABA-transaminase in neuropsychiatric disorders. Clin. Biochem. 28:145–154.

    PubMed  CAS  Google Scholar 

  • Sherif, F., Harro, J., EL-Hwuegi, A., and Oreland, L. (1994a). Anxiolytic-like effect of the GABA-transaminase inhibitor vigabatrin (gamma-vinyl GABA) on rat exploratory activity. Pharmacol. Biochem. Behav. 49:801–805.

    CAS  Google Scholar 

  • Sherif, F., Wahlstrom, G., and Oreland, L. (1994b). Increase in brain GABA-transaminase activity after chronic ethanol treatment in rats. J. Neural Transm. Gen. Sect. 98:69–79.

    CAS  Google Scholar 

  • Sills, G. J. (2003). Pre-clinical studies with the GABAergic compounds vigabatrin and tiagabine. Epileptic Disord. 5:51–56.

    PubMed  Google Scholar 

  • Snead, O. C., III (2000). Evidence for a G protein-coupled gamma-hydroxybutyric acid receptor. J. Neurochem. 75:1986–1996.

    PubMed  CAS  Google Scholar 

  • Sonders, M. S., and Amara, S. G. (1996). Channels in transporters. Curr. Opin. Neurobiol. 6:294–302.

    PubMed  CAS  Google Scholar 

  • Soudijn, W., and van Wijngaarden, I. (2000). The GABA transporter and its inhibitors. Curr. Med. Chem. 7:1063–1079.

    PubMed  CAS  Google Scholar 

  • Storici, P., De Biase, D., Bossa, F., Bruno, S., Mozzarelli, A., Peneff, C., Silverman, R. B., and Schirmer, T. (2004). Structures of gamma-aminobutyric acid (GABA) aminotransferase, a pyridoxal 5′-phosphate, and [2Fe–2S] cluster-containing enzyme, complexed with gamma-ethynyl-GABA and with the antiepilepsy drug vigabatrin. J. Biol. Chem. 279:363–373.

    PubMed  CAS  Google Scholar 

  • Suzdak, P. D., Frederiksen, K., Andersen, K. E., Sorensen, P. O., Knutsen, L. J., and Nielsen, E. B. (1992). NNC-711, a novel potent and selective gamma-aminobutyric acid uptake inhibitor: Pharmacological characterization. Eur. J. Pharmacol. 224:189–198.

    PubMed  CAS  Google Scholar 

  • Takamori, S., Riedel, D., and Jahn, R. (2000). Immunoisolation of GABA-specific synaptic vesicles defines a functionally distinct subset of synaptic vesicles. J. Neurosci. 20:4904–4911.

    PubMed  CAS  Google Scholar 

  • Thompson, R. K. R., Foltin, R. W., Boylan, R. J., Sweet, A., Graves, C. A., and Lowitz, C. E. (1981). Tonic immobility in Japanese quail can reduce the probability of sustained attack by cats. Anim. Learn. Behav. 9:145–149.

    Google Scholar 

  • Tian, N., Petersen, C., Kash, S., Baekkeskov, S., Copenhagen, D., and Nicoll, R. (1999). The role of the synthetic enzyme GAD65 in the control of neuronal gamma-aminobutyric acid release. Proc. Natl. Acad. Sci. U.S.A. 96:12911–12916.

    PubMed  CAS  Google Scholar 

  • Toney, M. D., Pascarella, S., and De Biase, D. (1995). Active site model for gamma-aminobutyrate aminotransferase explains substrate specificity and inhibitor reactivities. Protein Sci. 4:2366–2374.

    Article  PubMed  CAS  Google Scholar 

  • Trevitt, T., Carlson, B. B., Correa, M., Keene, A., Morales, M., and Salamone, J. D. (2002). Interactions between dopamine D1 receptors and GABA mechanisms in substantia nigra, pars reticulata: Neurochemical and behavioral studies. Psychopharmacology 159:229–237.

    PubMed  CAS  Google Scholar 

  • Ulloor, J., Mavanji, V., Saha, S., Siwek, D. F., and Datta, S. (2004). Spontaneous REM sleep is modulated by the activation of the pedunculopontine tegmental GABAB receptors in the freely moving rat. J. Neurophysiol. 91:1822–1831.

    PubMed  CAS  Google Scholar 

  • Vasconcelos, O. M., and Dalakas, M. C. (2003). Stiff-person Syndrome. Curr. Treat. Options Neurol. 5:79–90.

    PubMed  Google Scholar 

  • Vianna, D. M., Graeff, F. G., Brandão, M. L., and Landeira-Fernandez, J. (2001a). Defensive freezing evoked by electrical stimulation of the periaqueductal gray: Comparison between dorsolateral and ventrolateral regions. Neuroreport 12:4109–4112.

    CAS  Google Scholar 

  • Vianna, D. M., Landeira-Fernandez, J., and Brandão, M. L. (2001b). Dorsolateral and ventral regions of the periaqueductal gray matter are involved in distinct types of fear. Neurosci. Biobehav. Rev. 25:711–719.

    CAS  Google Scholar 

  • Wang, D., Deken, S. L., Whitworth, T. L., and Quick, M. W. (2003). Syntaxin 1A inhibits GABA flux, efflux, and exchange mediated by the rat brain GABA transporter GAT1. Mol. Pharmacol. 64:905–913.

    PubMed  CAS  Google Scholar 

  • White, H. S., Brown, S. D., Woodhead, J. H., Skeen, G. A., and Wolf, H. H. (1997). Topiramate enhances GABA-mediated chloride flux and GABA-evoked chloride currents in murine brain neurons and increases seizure threshold. Epilepsy Res. 28:167–179.

    PubMed  CAS  Google Scholar 

  • White, J. H., Wise, A., Main, M. J., Green, A., Fraser, N. J., Disney, G. H., Barnes, A. A., Emson, P., Foord, S. M., and Marshal, F. H. (1998). Heterodimerization is required for the formation of a functional GABAB receptor. Nature 396:679–682.

    PubMed  CAS  Google Scholar 

  • Whiting, P. J. (2003). The GABAA receptor gene family: New opportunities for drug development. Curr. Opin. Drug Discov. Dev. 6:648–657.

    CAS  Google Scholar 

  • Wong, C. G., Bottiglieri, T., and Snead, O. C., III (2003). GABA, gamma-hydroxybutyric acid, and neurological disease. Ann. Neurol. 54:3–12.

    Google Scholar 

  • Worrall, D. M., and Williams, D. C. (1994). Sodium ion-dependent transporters for neurotransmitters: A review of recent developments. Biochem. J. 297:425–436.

    PubMed  CAS  Google Scholar 

  • Wu, Y., Wang, W., and Richerson, G. B. (2001). GABA transaminase inhibition induces spontaneous and enhances depolarization-evoked GABA efflux via reversal of the GABA transporter. J. Neurosci. 21:2630–2639.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norberto Cysne Coimbra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beleboni, R.O., Carolino, R.O.G., Pizzo, A.B. et al. Pharmacological and Biochemical Aspects of GABAergic Neurotransmission: Pathological and Neuropsychobiological Relationships. Cell Mol Neurobiol 24, 707–728 (2004). https://doi.org/10.1007/s10571-004-6913-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-004-6913-z

Navigation