Skip to main content
Log in

Fabrication of a high phosphorus–nitrogen content modifier with star structure for effectively enhancing flame retardancy of lyocell fibers

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

A novel phosphoramidate salt fire retardant (FR) with high phosphorus–nitrogen (P–N) content, tris(2-aminoethyl)amine phosphoramidate salt (TAEAPA), was synthesized by a simple design philosophy. A three-arm star-like structure FR with a high level of P or N content was obtained. Phosphorus and nitrogen contents of TAEAPA increased up to 8.6 at% and 14.5 at%, respectively. Subsequently, TAEAPA was employed to finish lyocell fibers through the classical dip-dry-cure technique. Consequently, the thermal stability and fire retardancy of finished lyocell fibers were improved significantly, as evidenced by thermogravimetric and vertical flammability test. Finished lyocell fibers exhibited higher char residues (39.2 wt%) and lower degradation rate (0.6%/°C) under nitrogen atmosphere. Besides, lyocell fabrics finished by 300 g/L of TAEAPA finishing solution only had a char length of 53 mm when exposed to flame more than 60 s, and immediately extinguished after the removal of flame. Thermogravimetry-infrared and pyrolysis gas chromatography/mass spectrometry coupled techniques confirmed that the high contents of P and N included in TAEAPA played a good synergistic effect on both condensed and gaseous phase during the thermal pyrolysis process of lyocell fibers.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 3

Similar content being viewed by others

References

  • Alongi J, Ciobanu M, Malucelli G (2011) Novel flame retardant finishing systems for cotton fabrics based on phosphorus-containing compounds and silica derived from sol-gel processes. Carbohydr Polym 85:599–608

    CAS  Google Scholar 

  • Alongi J, Carletto RA, Di Blasio A, Carosio F, Bosco F, Malucelli G (2013) DNA: a novel, green, natural flame retardant and suppressant for cotton. J Mater Chem A 1:4779–4785

    CAS  Google Scholar 

  • Bai BC, Kim EA, Jeon YP, Lee CW, In SJ, Lee YS, Im JS (2014) Improved flame-retardant properties of lyocell fiber achieved by phosphorus compound. Mater Lett 135:226–228

    CAS  Google Scholar 

  • Blum A, Ames BN (1977) Flame-retardant additives as possible cancer hazards. Sci China Chem 195:17–23

    CAS  Google Scholar 

  • Buser HR (1986) Polybrominated dibenzofurans and dibenzo-p-dioxins: thermal reaction products of polybrominated diphenyl ether flame retardants. Environ Sci Technol 20:404–408

    PubMed  CAS  Google Scholar 

  • Chen X, Jiao C (2008) Thermal degradation characteristics of a novel flame retardant coating using TG-IR technique. Polym Degrad Stab 93:2222–2225

    CAS  Google Scholar 

  • Chen R, Huang X, Zheng R, Xie D, Mei Y, Zou R (2020) Flame-retardancy and thermal properties of a novel phosphorus-modified PCM for thermal energy storage. Chem Eng J 380:122500

    CAS  Google Scholar 

  • Cheng X, Yang CQ (2009) Flame retardant finishing of cotton fleece fabric: part V. Phosphorus-containing maleic acid oligomers. Fire Mater 33:365–375

    CAS  Google Scholar 

  • Cheng XW, Guan JP, Yang XH, Tang RC, Yao F (2019) A bio-resourced phytic acid/chitosan polyelectrolyte complex for the flame retardant treatment of wool fabric. J Clean Prod 223:342–349

    CAS  Google Scholar 

  • Fiss BG, Hatherly L, Stein RS, Friščić T, Moores A (2019) Mechanochemical phosphorylation of polymers and synthesis of flame-retardant cellulose nanocrystals. ACS Sustain Chem Eng 7:7951–7959

    CAS  Google Scholar 

  • Gaan S, Sun G (2007) Effect of phosphorus and nitrogen on flame retardant cellulose: a study of phosphorus compounds. J Anal Appl Pyrol 78:371–377

    CAS  Google Scholar 

  • Hajj R, El Hage R, Sonnier R, Otazaghine B, Gallard B, Rouif S, Nakhl M, Lopez-Cuesta J-M (2018) Grafting of phosphorus flame retardants on flax fabrics: comparison between two routes. Polym Degrad Stab 147:25–34

    CAS  Google Scholar 

  • Hall ME, Horrocks AR, Seddon H (1999) The fammability of lyocell. Polym Degrad Stab 64(1999):505–510

    CAS  Google Scholar 

  • Holder KM, Smith RJ, Grunlan JC (2017) A review of flame retardant nanocoatings prepared using layer-by-layer assembly of polyelectrolytes. J Mater Sci 52:12923–12959

    CAS  Google Scholar 

  • Horrocks AR (1983) An introduction to the burning behaviour of cellulosic fibers. JSDC 99:191–197

    CAS  Google Scholar 

  • Joshi HD, Joshi DH, Patel MG (2010) Dyeing and finishing of lyocell union fabrics: an industrial study. Color Technol 126:194–200

    CAS  Google Scholar 

  • Kim HG, Bai BC, In SJ, Lee YS (2016) Effects of an inorganic ammonium salt treatment on the flame-retardant performance of lyocell fibers. Carbon Lett 17:74–78

    Google Scholar 

  • Kok YN, Hovsepian PE, Haasch R, Petrov I (2005) Raman spectroscopy study of C/Cr coatings deposited by the combined steered cathodic ARC/unbalanced magnetron sputtering technique. Surf Coat Thechnol 200:1117–1122

    CAS  Google Scholar 

  • Levchik SV, Weil ED (2016) A review of recent progress in phosphorus-based flame retardants. J Fire Sci 24:345–364

    Google Scholar 

  • Liu XH, Zhang QY, Cheng BW, Ren YL, Zhang YG, Ding C (2017) Durable flame retardant cellulosic fibers modified with novel, facile and efficient phytic acid-based finishing agent. Cellulose 25:799–811

    Google Scholar 

  • Liu XH, Zhang YG, Cheng BW, Ren YL, Zhang QY, Ding C, Peng B (2018) Preparation of durable and flame retardant lyocell fibers by a one-pot chemical treatment. Cellulose 25:6745–6758

    CAS  Google Scholar 

  • Liu MS, Huang S, Zhang GX, Zhang FX (2019a) Synthesis of P-N-Si synergistic flame retardant based on a cyclodiphosphazane derivative for use on cotton fabric. Cellulose 26:7553–7567

    CAS  Google Scholar 

  • Liu ZL, Shang SM, Chiu KL, Jiang SX, Dai FY (2019b) Fabrication of conductive and flame-retardant bifunctional cotton fabric by polymerizing pyrrole and doping phytic acid. Polym Degrad Stab 167:277–282

    CAS  Google Scholar 

  • Liu XH, Zhang QY, Peng B, Ren YL, Cheng BW, Ding C, Su XW, He J, Lin SG (2020) Flame retardant cellulosic fabrics via layer-by-layer self-assembly double coating with egg white protein and phytic acid. J Clean Prod 243:118641

    CAS  Google Scholar 

  • Mohamed OA, Abdel-Mohdy FA (2006) Preparation of flame-retardant leather pretreated with pyrovatex CP. J Appl Polym Sci 99:2039–2043

    CAS  Google Scholar 

  • Nabil B, Ahmida E, Christine C, Julien V, Abdelkrim A (2018) Polyfunctional cotton fabrics with catalytic activity and antibacterial capacity. Chem Eng J 351:328–339

    CAS  Google Scholar 

  • Nazir R, Gaan S (2018) Recent developments in P(O/S)–N containing flame retardants. J Appl Polym Sci 47910:218–244

    Google Scholar 

  • Nguyen TM, Chang SC, Condon B, Slopek R, Graves E, Yoshioka-Tarver M (2013) Structural effect of phosphoramidate derivatives on the thermal and flame retardant behaviors of treated cotton cellulose. Ind Eng Chem Res 52:4715–4724

    CAS  Google Scholar 

  • Nielsen GD, Wolkoff P (2010) Cancer effects of formaldehyde: a proposal for an indoor air guideline value. Arch Toxicol 84:423–446

    PubMed  PubMed Central  CAS  Google Scholar 

  • Okubayashi S, Griesser U, Bechtold T (2004) A kinetic study of moisture sorption and desorption on lyocell fibers. Carbohydr Polym 58:293–299

    CAS  Google Scholar 

  • Paosawatyanyong B, Jermsutjarit P, Bhanthumnavin W (2012) Surface nanomodification of cotton fiber for flame retardant application. J Nanosci Nanotechnol 12:748–753

    PubMed  CAS  Google Scholar 

  • Piccinno F, Hischier R, Saba A, Mitrano D, Seeger S, Som C (2016) Multi-perspective application selection: a method to identify sustainable applications for new materials using the example of cellulose nanofiber reinforced composites. J Clean Prod 112:1199–1210

    CAS  Google Scholar 

  • Prabhakar MN, Raghavendra GM, Vijaykumar BVD, Patil K, Seo J, Jung-il S (2019) Synthesis of a novel compound based on chitosan and ammonium polyphosphate for flame retardancy applications. Cellulose 26:8801–8812

    CAS  Google Scholar 

  • Salmeia KA, Jovic M, Ragaisiene A, Rukuiziene Z, Milasius R, Mikucioniene D, Gaan S (2016) Flammability of cellulose-based fibers and the effect of structure of phosphorus compounds on their flame retardancy. Polymers 8:293

    PubMed Central  Google Scholar 

  • Seddon H, Hall M, Horrocks AR (1996) The flame retardancy of lyocell fibers. Polym Degrad Stab 54:401–402

    CAS  Google Scholar 

  • Shen Y, Zhen L, Huang D, Xue J (2014) Improving anti-UV performances of cotton fabrics via graft modification using a reactive UV-absorber. Cellulose 21:3745–3754

    CAS  Google Scholar 

  • Shibata M, Oyamada S, Kobayashi S, Yaginuma D (2004) Mechanical properties and biodegradability of green composites based on biodegradable polyesters and lyocell fabric. J Appl Polym Sci 92:3857–3863

    CAS  Google Scholar 

  • Tao F, Sellstrom U, de Wit Cynthia A (2019) Organohalogenated flame retardants and organophosphate esters in office air and dust from Sweden. Environ Sci Technol 53:2124–2133

    PubMed  CAS  Google Scholar 

  • Thomas B, Raj MC, Athira KB, Rubiyah MH, Jithin J, Moores A, Drisko GL, Sanchez C (2018) Nanocellulose, a versatile green platform: from biosources to materials and their applications. Chem Rev 118:11575–11625

    PubMed  CAS  Google Scholar 

  • Tian P, Lu Y, Wang D, Zhang G, Zhang F (2019) Synthesis of a new N-P durable flame retardant for cotton fabrics. Polym Degrad Stab 165:220–228

    CAS  Google Scholar 

  • Wan C, Jiao Y, Wei S, Zhang L, Wu Y, Li J (2019) Functional nanocomposites from sustainable regenerated cellulose aerogels: a review. Chem Eng J 359:459–475

    CAS  Google Scholar 

  • Wang D, Feng X, Zhang L, Li M, Liu M, Tian A, Fu S (2019a) Cyclotriphosphazene-bridged periodic mesoporous organosilica-integrated cellulose nanofiber anisotropic foam with highly flame-retardant and thermally insulating properties. Chem Eng J 375:121933

    CAS  Google Scholar 

  • Wang S, Du X, Deng S, Fu X, Du Z, Cheng X, Wang H (2019b) A polydopamine-bridged hierarchical design for fabricating flame-retarded, superhydrophobic, and durable cotton fabric. Cellulose 26:7009–7023

    CAS  Google Scholar 

  • Xu Q, Shen L, Duan P, Zhang L, Fu F, Liu X (2020) Superhydrophobic cotton fabric with excellent healability fabricated by the “grafting to” method using a diblock copolymer mist. Chem Eng J 379:122401

    Google Scholar 

  • Yang CQ, Wu W, Xu Y (2005) The combination of a hydroxy-functional organophosphorus oligomer and melamine-formaldehyde as a flame retarding finishing system for cotton. Fire Mater 29:109–120

    CAS  Google Scholar 

  • Zhang H, Hou C, Song L, Ma Y, Ali Z, Gu J, Zhang B, Zhang H, Zhang Q (2018) A stable 3D sol-gel network with dangling fluoroalkyl chains and rapid self-healing ability as a long-lived superhydrophobic fabric coating. Chem Eng J 334:598–610

    CAS  Google Scholar 

  • Zhu P, Sui S, Wang B, Sun K, Sun G (2004) A study of pyrolysis and pyrolysis products of flame-retardant cotton fabrics by DSC, TGA, and PY-GC-MS. J Anal Appl Pyrol 71:645–655

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are very thanks for the support provided by the National Key Research and Development Program of China (No. 2017YFB0309000).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao-hui Liu or Yuan-lin Ren.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Qy., Liu, Xh., Ren, Yl. et al. Fabrication of a high phosphorus–nitrogen content modifier with star structure for effectively enhancing flame retardancy of lyocell fibers. Cellulose 27, 8369–8383 (2020). https://doi.org/10.1007/s10570-020-03333-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-020-03333-0

Keywords

Navigation