Skip to main content
Log in

Effect of fiber hybridization and montmorillonite clay on properties of treated kenaf/aloe vera fiber reinforced PLA hybrid nanobiocomposite

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Hybrid fiber reinforced polymer nanobiocomposites were prepared from kenaf fiber, aloe vera fiber, polylactic acid (PLA), and montmorillonite (MMT) clay through the compression molding method. The effects of fiber hybridization and MMT clay on their mechanical, water absorption, thermal and biodegradability properties were studied. Before fabrication, kenaf and aloe vera fibers were treated with the 6% sodium hydroxide solution to improve the bonding nature and compatibility between fibers and PLA matrix. Results indicated that the biocomposites thermal, tensile, flexural, impact, abrasion resistance, and water resistance properties were increased by adding of MMT clay. The mechanical properties were found to be increased upon 15 wt% kenaf fiber, 15 wt% aloe vera fiber hybridization and 1 wt% MMT clay incorporated. In addition, the 1 wt% MMT clay included hybrid nanobiocomposite exhibited increased tensile strength, flexural strength, impact strength, and abrasion resistance by 5.24, 2.46, 37.10, and 23.91%, respectively compared to virgin PLA. Additionally, the tensile and flexural moduli of these nanobiocomposite are improved by 24.61 and 108.09%, respectively, than neat PLA. With the addition of 3 wt% MMT clay resulted in the biocomposite decomposition temperature from 280 to 307 °C at T10 likewise 337 to 361 °C at T75 SEM analysis disclosed that MMT clay strongly enhances the bonding and compatibility among fibers and PLA. TEM result reveals that the quality of MMT dispersion decreases with increase in MMT content. The fiber hybridization improved the biodegradability and water resistance properties of biocomposites, however, the addition of MMT clay improved water resistance but decreased biodegradability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig.4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abd El-Aziz ME, Kamal KH, Ali KA, Abdel-Aziz MS, Kamel S (2018) Biodegradable grafting cellulose/clay composites for metal ions removal. Int J Biol macromol 118:2256–2264

    CAS  PubMed  Google Scholar 

  • Abd El-Aziz ME, Saber E, El-Khateeb MA (2019) Preparation and characterization of CMC/HA-NPs/pulp nanocomposites for the removal of heavy metal Ions. KGK 72(4):36–41

    CAS  Google Scholar 

  • Ahmed SH, Rasid R, Bonnia NN, Zainol I, Mamun AA, Bledzki AK, Beg MDH (2011) Polyester-Kenaf composites: effects of alkali fiber treatment and toughn-ning of matrix using liquid natural rubber. J Compos Mater 45:203–217

    Google Scholar 

  • Akil HM, Omar MF (2011) Kenaf fiber reinforced composites: a review. Mater Des 32:4107–4121

    CAS  Google Scholar 

  • Alamri H, Low IM (2013) Effect of water absorption on the mechanical properties of nanoclay filled recycled cellulose fiber reinforced epoxy hybrid nanocomposites. Compos Part A Appl Sci Manuf 44:23–31

    CAS  Google Scholar 

  • Alamri H, Low IM, Alothman Z (2012) Mechanical, thermal and microstructural characteristics of cellulose fibre reinforced epoxy/organoclay nanocomposites. Compos Part B-Eng 43:2762–2771

    CAS  Google Scholar 

  • Alwani MS, Khalil HPS, Islam MN, Sulaiman O, Zaidon A, Dungani R (2015) Microstructural study, tensile properties, and scanning electron microscopy fractography failure analysis of various agricultural residue fibers. J Nat Fibers 12:154–168

    Google Scholar 

  • Anbukarasi K, Kalaiselvam S (2015) Study of effect of fibre volume and dimension on mechanical, thermal and water absorption behaviour of luffa reinforced epoxy composites. Mater Des 66:321–330

    CAS  Google Scholar 

  • Anil KV, Prasenjit M (2016) Physicochemical characterization and pyrolysis kinetic study of sugarcane bagasse using thermogravemetric analysis. J Energy Resour Technol 138(052205):1–10

    Google Scholar 

  • Anuar H, Zuaraida A, Fuad F (2010) Biodegradable PLA-kenaf fiber biocomposite for cleaner environment. In: malaysian science and technology congress (MSTC 2010), crystal crown hotel, petaling jaya, Malaysia, Nov p 9–11

  • Asaithambi B, Ganesan G, Ananda Kumar S (2014) Bio-composites: development and mechanical characterization of banana/sisal fibre reinforced poly lactic acid (PLA) hybrid composites. Fibers Polym 15:847–854

    CAS  Google Scholar 

  • Aziz SH, Ansell MP (2004) The effect of alkalization and fibre alignment on the mechanical and thermal properties of kenaf and hemp bast fibre composites part 1–polyester resin matrix. Compos Sci Tech 64:1219–1230

    CAS  Google Scholar 

  • Balakrishnan H, Hassan A, Wahit MU, Yussuf AA, Razak SBA (2010) Novel toughened polylactic acid nanocomposite: mechanical, thermal and morphological properties. Mater Des 31:3289–3298. https://doi.org/10.1016/j.matdes.2010.02.008

    Article  CAS  Google Scholar 

  • Bledzki AK, Gassan J (1999) Composites reinforced with cellulose-based fiber. Prog Polym Sci 24:221–274

    CAS  Google Scholar 

  • Bogaert JC, Coszach PH (2000) Poly (lactic acid): a potential solution to plastic waste dilemma. Macromole symp 153:287–303

    CAS  Google Scholar 

  • Boopalan M, Niranjanaa M, Umapathy MJ (2013) Study on the mechanical properties and thermal properties of jute and banana fiber reinforced epoxy hybrid composites. Compos Part B-Eng 51:54–57

    CAS  Google Scholar 

  • Bozkurt E, Kaya E, Tanog˘lu M (2007) Mechanical and thermal behaviour of non-crimp glass fibre reinforced layered clay/epoxy nanocomposites. Compos Sci Technol 67:3394–3403

    CAS  Google Scholar 

  • Brostow W, Lobland HEH, Hnatchuk N, Perez JM (2017) Improvement of scratch and wear resistance of polymers by fillers including nanofillers. Nanomaterials 7:66. https://doi.org/10.3390/nano7030066

    Article  CAS  PubMed Central  Google Scholar 

  • Chaitanya S, Singh I (2016) Novel aloe vera fiber reinforced biodegradable composites-development and characterization. J Reinf Plast Compos 35:1411–1423

    CAS  Google Scholar 

  • Chandra R, Rustigi R (1998) Biodegradable Polymers. Prog Polym Sci 23:1273–1335

    CAS  Google Scholar 

  • Chen C, Lv G, Pan C, Song M, Wu C, Guo D, Wang X, Chen B, Gu Z (2007) Poly (lactic acid) (PLA) based nanocomposites: a novel way of drug-releasing. Biomed Mater 2:L1–L4

    CAS  PubMed  Google Scholar 

  • Deka BK, Maji TK (2011) Study on the properties of nanocomposite based on high density polyethylene, polypropylene, polyvinyl chloride and wood. Compos Part A Appl Sci Manuf 42:686–693

    Google Scholar 

  • Dhakal HN, Zhang ZY, Guthrie R, Macmullen J, Bennette N (2013) Development of flax/carbon fiber hybrid composites for enhanced properties. Carbohyd Polym 96:1–8

    CAS  Google Scholar 

  • Drumrit RE, Gruber PR, Henton DE (2000) Polylactic acid technology. Adv Mater 12:1841–1846

    Google Scholar 

  • Dueramae I, Jubsilp C, Takeichi T, Rimdusit S (2014) High thermal and mechanical properties enhancement obtained in highly filled polybenzoxazine nanocomposites with fumed silica. Compos Part B Eng 56:197–206

    CAS  Google Scholar 

  • El-Sayed NS, Abd El-Aziz ME, Kamel S, Turky G (2018) Synthesis and characterization of polyaniline/tosylcellulose stearate composites as promising semiconducting materials. Synth Met 236:44–53

    CAS  Google Scholar 

  • El-Shekeil YA, Sapuan SM, Abdan K, Zainudin ES (2012) Influence of fiber content on the mechanical and thermal properties of Kenaf fiber reinforced thermoplastic polyurethane composites. Mater Des 40:299–303

    CAS  Google Scholar 

  • El-Shekeil YA, Sapuan SM, Jawaid M, Shuja’a OMA (2014) Influence of fiber content on mechanical, morphological and Thermal properties of kenaf fibres reinforced poly (vinyl chloride)/thermoplastic polyurethane poly-blend composites. Mater Des 58:130–135

    CAS  Google Scholar 

  • Eshun K, He Q (2004) Aloevera: a valuable ingredient for food, pharmaceutical and cosmetic industries—a review. Crit Rev Food Sci Nutr 44:91–96

    PubMed  Google Scholar 

  • Feng Y, Wang B, Wang F, Zheng G, Dai K, Liu C, Chen J, Shen C (2014) Effects of modified silica on morphology, mechanical property, and thermostability of injection-molded polycarbonate/silica nanocomposites. J Reinf Plast Compos 33:911–922

    Google Scholar 

  • Greiner S, Romacker AK, Wildermann B, Schwabe PH, Schmidmaier GJ (2007) Bisphosphonates incorporated in a poly (D, L-lactide) implant coating inhibit osteoclast like cells in vitro. J Biomed Mater Res A 83:1184–1191

    PubMed  Google Scholar 

  • Guo XD, Zhang LJ, Qian Y, Zhou J (2007) Effect of composition on the formation of poly (D, L-lactide) microspheres for drug delivery systems: mesoscale simulations. Chem Eng J 131:195–201

    CAS  Google Scholar 

  • Hakamy A, Shaikh FUA, Low IM (2013) Microstructures and mechanical properties of hemp fabric reinforced organoclay–cement nanocomposites. Constr Build Mater 49:298–307

    Google Scholar 

  • Hammad ABA, El-Aziz MEA, Hasanin MS, Kamel SA (2019) novel electromagnetic biodegradable nanocomposite based on cellulose, polyaniline, and cobalt ferrite nanoparticles. Carbohydr 216:54–62. https://doi.org/10.1016/j.carbpol.2019.03.038

    Article  CAS  Google Scholar 

  • Hong CK, Hwang I, Kim N, Park DH, Hwang BS, Nah C (2008) Mechanical properties of silanized jute-polypropylene composites. J Indus Eng Chem 14:71–76

    CAS  Google Scholar 

  • Huda MS, Drzal LT, Misra M, Mohanty AK (2006) Wood fiber-reinforced poly (lactic acid) composites: evaluation of the physicomechanical and morphological properties. J Appl Polym Sci 102:4856–4869. https://doi.org/10.1002/app.24829

    Article  CAS  Google Scholar 

  • Islam MS, Talib ZA, HasanM RI, Haafiz MKM, Jawaid M, Islam A, Inuwa IM (2017) Evaluation of mechanical, morphological, and biodegradable properties of hybrid natural fiber polymer nanocomposites. Polym Compos 38:583–587

    CAS  Google Scholar 

  • Islama MdS, Hasbullah NSB, Hasan M, Talib ZA, Jawaid M, Haafiz MKM (2015) Physical, mechanical and biodegradable properties of kenaf/coir hybrid fiber reinforced polymer nanocomposites. Mater Today Commun 4:69–76

    Google Scholar 

  • Ismail H, Nizam JM, Khalil HPSA (2001) The effect of a compatibiliser on the mechanical properties and mass swell of white rice husk ash filled natural rubber/linear low density polyethylene blends. Polym Test 20:125–133

    CAS  Google Scholar 

  • Ismail H, Pasbakhsh P, Fauzi MN, Bakar AA (2008) Morphological, thermal and tensile properties of halloysite nanotubes filled ethylene propylene diene monomer (EPDM) nanocomposites. Polym Test 27:841–850. https://doi.org/10.1016/j.polymertesting.2008.06.007

    Article  CAS  Google Scholar 

  • Jacob M, Thomas S, Varughese KT (2004) Mechanical properties of sisal/oil palm hybrid fiber reinforced natural rubber composites. Compos Sci Technol 64:955–965

    CAS  Google Scholar 

  • Jahanmardi R, Kangarlou B, Dibazar A (2013) Effects of organically modified nanoclay on cellular morphology, tensile properties, and dimensional stability of flexible polyurethane foams. J Nanostruct Chem 3:82. https://doi.org/10.1186/2193-8865-3-82

    Article  Google Scholar 

  • Joh MJ, Francis B, Varughese KT, Thomas S (2008) Effect of chemical modification on properties of hybrid fibre biocomposites. Compos Part A Appl Sci Manuf 39:352–363

    Google Scholar 

  • Joshi SV, Drzal LT, Mohanty AK, Arora S (2004) Are natural fibre composites environmentally Superior to glass fiber reinforced composites? Compos Part A Appl Sci Manuf 35:371–376

    Google Scholar 

  • Kabir MM, Wang H, Lau KT, Carnado F (2012) Chemical treatments on plant-based natural fiber reinforced polymer composites: an overview. Compos Part B Eng 43(7):2883–2892

    CAS  Google Scholar 

  • Khali HPSA, Alwani MS, Ridzuan R, Kamarudin H, Khairul A (2008) Chemical composition, morphological characteristics, and cell wall structure of Malaysian oil palm fibres. Polym Plast Tech Eng 47:273–280. https://doi.org/10.1080/03602550701866840

    Article  CAS  Google Scholar 

  • Kumar KP, Sekaran SJ (2014) Some natural fibers used in polymer composites and their extraction processes: a review. J Reinf Plast Compos 33:1879–1892

    Google Scholar 

  • Lei Y, Wu Q, Clemons CM, Yao F, Xu Y (2007) Influence of nanoclay on properties of HDPE/Wood composites. J Appl Polym Sci 106:3958–3966

    CAS  Google Scholar 

  • Li S, Xu S, Yang C, Lu Q (2004) Fast pyrolysis of biomass in free-fall reactor for hydrogen-rich gas. Fuel Process Technol 85:1201–1211

    CAS  Google Scholar 

  • Liu W, Hoa SV, Pugh M (2005) Fracture toughness and water uptake of high-performance epoxy/nanoclay nanocomposites. Compos Sci Technol 65:2364–2373

    CAS  Google Scholar 

  • Madaleno L, Thomsen JS, Pinto JC (2010) Morphology, thermal and mechanical properties of PVC/MMT nanocomposites prepared by solution blending and solution blending + melt compounding. Compos Sci Technol 70:804–814

    CAS  Google Scholar 

  • Maya J, Francis B, Thomas S, Varughese KT (2006) Dynamical mechanical analysis of sisal/oil palm hybrid fiber-reinforced natural rubber composites. Polym Compos 27:671–680

    Google Scholar 

  • Moghaddasi SM, Verma SK (2011) Int J Biol Med Res 2:466–471

    Google Scholar 

  • Mohd Edeerozey AM, Akil HM, Azhar AB, Zainal Ariffin MI (2007) Chemical modification of kenaf fibres. Mater Lett 61:2023–2025

    Google Scholar 

  • Mustapa IR, Shanks RA, Kong I (2013) Poly(lactic acid)-hemp-nanosilica hybrid composites: thermomechanical, thermal behavior and morphological properties. Int J Adv Sci Eng Technol 3:192–199

    Google Scholar 

  • Ochi S (2008) Mechanical properties of kenaf fibers and kenaf/ PLA composites. Mech Mater 40:446–452. https://doi.org/10.1016/j.mechmat.2007.10.006

    Article  Google Scholar 

  • Ohkita T, Lee SH (2006) Thermal degradation and biodegradability of poly (lactic acid)/corn starch biocomposites. J Appl Polym Sci 100(4):3009–3017

    CAS  Google Scholar 

  • Panneerdhass R, Gnanavelbabu A, Rajkumar K (2014) Mechanical properties of luffa fiber and ground nut reinforced epoxy polymer hybrid composites. Proc Eng 97:2042–2051

    CAS  Google Scholar 

  • Patel K, Patel J, Gohil P, Chaudhary V (2018) Effect of nano clay on mechanical behavior of bamboo fiber reinforced polyester composites. Appl Mecha Mater 877:294–298

    Google Scholar 

  • Petinakis E, Yu L, Simon G, Dean K (2013) Natural fibre bio-composites incorporating poly (Lactic Acid). In: Martin (ed) Fiber reinforced polymers-the technology applied for concrete repair. Intech Open, London, pp 41–59. https://doi.org/10.5772/52253

    Chapter  Google Scholar 

  • Qutubuddin S, Fu X (2002) Polymer-clay nanocomposites: synthesis and properties. Marcel Dekker, USA

    Google Scholar 

  • Ramesh P, Durga Prasad B, Narayana KL (2018a) Characterization of kenaf fiber and its composites: a review. J Reinf Plast Compos 37:731–737

    CAS  Google Scholar 

  • Ramesh P, Durga Prasad B, Narayana KL (2018b) Morphological and mechanical properties of treated kenaf fiber/MMT clay reinforced PLA hybrid biocomposites. AIP Conf Proc 2057:020035. https://doi.org/10.1063/1.5085606

    Article  CAS  Google Scholar 

  • Ramesh P, Durga Prasad B, Narayana KL (2019) Effect of MMT clay on mechanical, thermal and barrier properties of treated aloevera fiber/PLA-hybrid biocomposites. Silicon. https://doi.org/10.1007/s12633-019-00275-6

    Article  Google Scholar 

  • Ramesh P, Prasad BD, Narayana KL (2020) Influence of montmorillonite clay contentent on thermal, mechanical, water absorption and biodegradable properties of treated kenaf fiber/PLA-hybrid biocomposites. Silicon. https://doi.org/10.1007/s12633-020-00401-9

    Article  Google Scholar 

  • Ridzuan MJM, Adul Majid MS, Afendi M, Azduwin K, Amin NAM, Zahri JM, Gibson AG (2016) Moisture absorption and mechanical degradation of hybrid pennisetum purpureum/glass–epoxy composites. Compos Struct 141:110–116

    Google Scholar 

  • Saba N, Tahir P, Jawaid M (2014) A review on potentiality of nano filler/natural fiber filled polymer hybrid composites. Polymers (Basel) 6:2247–2273

    Google Scholar 

  • Saba N, Paridah MT, Abdan K, Ibrahim NA (2015a) Preparation and characterization of fire retardant nano-filler from oil palm empty fruit bunch fibers. Bioresource 10:4530–4543

    CAS  Google Scholar 

  • Saba N, Paridah MT, Jawaid M (2015b) Mechanical properties of kenaf fibre reinforced polymer composite: a review. Constr Build Mater 76:87–96

    Google Scholar 

  • Saba N, Paridah MT, Abdan K, Ibrahim NA (2016) Effect of oil palm nano filler on mechanical and morphological properties of kenaf reinforced epoxy composites. Constr Build Mater 123:15–26

    CAS  Google Scholar 

  • Sajna VP, Mohanty S, Nayak SK (2014) Hybrid green nanocomposites of poly (lactic acid) reinforced with banana fibre and nanoclay. J Reinf Plast Compos 33:1717–1732

    Google Scholar 

  • Samal SK, Mohanty S, Nayak SK (2009) polypropylene-bamboo/glass fiber hybrid composites: fabrication and analysis of mechanical, morphological, thermal and dynamic mechanical behavior. J Plast Comp 28:2729–2747

    CAS  Google Scholar 

  • Sathishkumar T, Naveen J, Satheeshkumar S (2014) Hybrid fiber reinforced polymer composites—a review. J Reinf Plast Compos 33:454–471

    Google Scholar 

  • Shanks RA, Hodzic A, Ridderhof D (2006) Composites of poly (lactic acid) with flax fibers modified by interstitial polymerization. J Appl Polym Sci 101(6):3620–3629

    CAS  Google Scholar 

  • Siddika S, Mansura F, Hasan M (2013) Physico-mechanical properties of jute-coir fiber reinforced hybrid polypropylene composites. Int J Chem Mater Sci Eng 7:41–45

    Google Scholar 

  • Singh S, Mohanty AK, Misra M (2010) Hybrid bio-composite form talc, wood fiber and bioplastic: fabrication and characterization. Compos Part A Appl Sci Manuf 41:304–312

    Google Scholar 

  • Souza VS, Bianchi O, Lima MFS, Mauler RS (2014) Morphological, thermomechanical and thermal behavior of epoxy/MMT nanocomposites. J Non Cryst Solids 400:58–66

    CAS  Google Scholar 

  • Thakur VK, Thakur MK (2014) Processing and Characterization of natural cellulose fibers/thermoset polymer composites. Carbohydr Polym 109:102–117

    CAS  PubMed  Google Scholar 

  • Vilay V, Jaafar M, Mat Taib R, Todo M (2008) Effect of fiber surface treatment and fiber loading on the properties of bagasse fiber reinforced unsaturated polyester composites. Compos Sci Technol 68:631–638

    CAS  Google Scholar 

  • Xie Y, Hill CAS, Xiao Z, Militz H (2010) Silane coupling agents used for natural eber/polymer composites: a review. Compos Part A Appl Sci Manuf 41:806–819

    Google Scholar 

  • Xu Y, Hoa SV (2008) Mechanical properties of carbon fibre reinforced epoxy/clay nanocomposites. Compos Sci Technol 68:854–861

    CAS  Google Scholar 

  • Yang HS, Kim HJ, Son J, Park HJ, Lee BJ, Hwang TS (2004) Rice-husk flour filled polypropylene composites; mechanical and morphological study. Compos Struct 63(3–4):305–312

    Google Scholar 

  • Yeh JM, Huang HY, Chena CL, Su WF, Yu YH (2006) Siloxane-modified epoxy resin–clay nanocomposite coatings with advanced anticorrosive properties prepared by a solution dispersion approach. Surf Coat Technol 200:2753–2763

    CAS  Google Scholar 

  • Yousif BF, El Tayeb N, S. M. (2008) Adhesive wear performance of T-RP and UT-OPRP composites. Tribo Lett 32:199–208

    CAS  Google Scholar 

  • Youssef AM, Mohamed SA, Abdel-Aziz MS, Abdel-Aziz ME, Turky G, Kamel S (2016) Biological studies and electrical conductivity of paper sheet based on PANI/PS/Ag-NPs nanocomposite. Carbohydr Polym 147:333–343. https://doi.org/10.1016/j.carbpol.2016.03.085

    Article  CAS  PubMed  Google Scholar 

  • Yussuf AA, Massoumi I, Hassan A (2010) Comparison of polylactic acid/kenaf and polylactic acid/rise husk composites: the influence of the natural fibers on the mechanical, thermal and biodegradability properties. J Polym Environ 18:422–429

    CAS  Google Scholar 

  • Zainudin ES, Yan L, Haniffah W, Jawaid M, Alothman OY (2014) Effect of coir fiber loading on mechanical and morphological properties of oil palm fibers reinforced polypropylene composites. Polym Compos 35:1418–1425

    CAS  Google Scholar 

  • Zhao H, Li RKY (2008) Effect of water absorption on the mechanical and dielectric properties of nano-alumina filled epoxy nanocomposites. Compos Part A Appl Sci Manuf 39:602–611

    Google Scholar 

  • Zhong J, Li H, Jianliang Yu, Tan T (2011) Effects of natural fiber surface modification on mechanical properties of poly (lactic acid) (PLA)/Sweet sorghum fiber composites. Polymer Plast Tech Eng 50:1583–1589

    CAS  Google Scholar 

  • Zulfli NHM, Shyang CW (2010) Flexural and morphological properties of epoxy/glass fibre/silane-treated organo montmorillonite composites. J Phys Sci 21:41–50

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Ramesh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramesh, P., Prasad, B.D. & Narayana, K.L. Effect of fiber hybridization and montmorillonite clay on properties of treated kenaf/aloe vera fiber reinforced PLA hybrid nanobiocomposite. Cellulose 27, 6977–6993 (2020). https://doi.org/10.1007/s10570-020-03268-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-020-03268-6

Keywords

Navigation