Skip to main content
Log in

Naturally occurring betaine grafted on cotton fabric for achieving antibacterial and anti-protein adsorption functions

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

In the textile industry, the use of naturally occurring antibacterial products in simple one-pot finishing processes is recommended. In this study, we present a clean technology using betaine (Bet) as the finishing reagent for preparation antibacterial fabrics. The reactive carboxyl group of Bet binds to the cellulosic fibers of fabrics via esterification, while the quaternary ammonium moiety of this compound exerts the antibacterial effect. Analyses show that the antibacterial efficiencies of Bet-modified cotton fabrics against E. coli and S. aureus are as high as 99.0 and 99.3%, respectively. Furthermore, these fabrics are highly durable against washing, with antibacterial activities greater than 91.5% after 20 washing cycles, and they display an excellent anti-protein adsorption property. The modification process proposed herein does not compromise the original properties of the fabric, and according to cytotoxicity tests, the modified fabrics are safe to wear against human skin. Overall, the fabric treatment process designed in this study constitutes a novel approach to the development of green finishing technologies in the textile field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Amini SM (2019) Preparation of antimicrobial metallic nanoparticles with bioactive compounds. Mater Sci Eng C Mater Biol Appl 103:109809

    CAS  PubMed  Google Scholar 

  • Arza CR, Ilk S, Demircan D, Zhang B (2018) New biobased non-ionic hyperbranched polymers as environmentally friendly antibacterial additives for biopolymer. Green Chem 20(6):1238–1249

    CAS  Google Scholar 

  • Burnett CL, Bergfeld WF, Belsito DV, Hill RA, Klaassen CD, Liebler DC, Marks JG, Shank RC, Slaga TJ, Snyder PW, Andersen FA, Heldreth B (2018) Safety assessment of alkyl betaines as used in cosmetics, safety assessment of alkyl betaines as used in cosmetics. Int J Toxicol 37:28–46

    Google Scholar 

  • Chambers ST, Lever M (1996) Betaines and urinary tract infections. Nephron 74(1):1–10

    CAS  PubMed  Google Scholar 

  • Chatha SAS, Asgher M, Asgher R, Hussain AI, Iqbal Y, Hussain SM, Bilal M, Saleem F, Iqbal HMN (2019) Environmentally responsive and anti-bugs textile finishes-recent trends, challenges, and future perspectives. Sci Total Environ 690:667–682

    CAS  PubMed  Google Scholar 

  • Chen S, Chen S, Jiang S, Mo Y, Luo J, Tang J, Ge Z (2011a) Study of zwitterionic sulfopropylbetaine containing reactive siloxanes for application in antibacterial materials. Colloid Surface B 85(2):323–329

    CAS  Google Scholar 

  • Chen S, Chen S, Jiang S, Mo Y, Tang J, Ge Z (2011b) Synthesis and characterization of siloxane sulfobetaine antimicrobial agents. Surf Sci 605(11):25–28

    Google Scholar 

  • Chen S, Chen S, Jiang S, Xiong M, Luo J, Tang J, Ge Z (2011c) Environmentally friendly antibacterial cotton textiles finished with siloxane sulfopropylbetaine. ACS Appl Mater Interfaces 3(4):1154–1162

    CAS  PubMed  Google Scholar 

  • Chen S, Yuan L, Li Q, Li J, Zhu X, Jiang Y, Sha O, Yang X, Xin J, Wang J, Stadler F, Huang P (2016a) Durable antibacterial and nonfouling cotton textiles with enhanced comfort via zwitterionic sulfopropylbetaine coating. Small 12(26):3516–3521

    CAS  PubMed  Google Scholar 

  • Chen Y, Li J, Li Q, Shen Y, Ge Z, Zhang W, Chen S (2016b) Enhanced water-solubility, antibacterial activity and biocompatibility upon introducing sulfobetaine and quaternary ammonium to chitosan. Carbohydr Polym 143:246–253

    CAS  PubMed  Google Scholar 

  • Chen Y, Zhang Q, Ma Y, Han Q (2018) Surface-oriented fluorinated pyridinium silicone with enhanced antibacterial activity on cotton via supercritical impregnation. Cellulose 25(2):1499–1511

    CAS  Google Scholar 

  • Cheng G, Li G, Xue H, Chen S, Bryers JD, Jiang S (2009) Zwitterionic carboxybetaine polymer surfaces and their resistance to long-term biofilm formation. Biomaterials 30(28):5234–5240

    CAS  PubMed  PubMed Central  Google Scholar 

  • Choi YJ, Na JD, Jun DS, Kim YC, Funct J (2018) Protective effect of betaine against galactosamine-induced acute liver injury in rats. J Funct Foods 44:65–73

    CAS  Google Scholar 

  • Cholewa JM, Guimaraes-Ferreira L, Zanchi NE (2014) Effects of betaine on performance and body composition: a review of recent findings and potential mechanisms. Amino Acids 46(8):1785–1793

    CAS  PubMed  Google Scholar 

  • Cosquer A, Pichereau V, Le Mee D, Le Roch M, Renault J, Carboni B, Uriac P, Bernard T (1999) Toxicity and osmoprotective activities of analogues of glycine betaine obtained by solid phase organic synthesis towards Sinorhizobium meliloti. Bioorg Med Chem Lett 9(1):49–54

    CAS  PubMed  Google Scholar 

  • Cosquer A, Ficamos M, Jebbar M, Corbel JC, Choquet G, Fontenelle C, Uriac P, Bernard T (2004) Antibacterial activity of glycine of betaine analogues: involvement osmoporters. Bioorg Med Chem Lett 14(9):2061–2065

    CAS  PubMed  Google Scholar 

  • Craig SA (2004) Betaine in human nutrition. Am J Clin Nutr 80:539–549

    CAS  PubMed  Google Scholar 

  • Dang Y, Xing CM, Quan M, Wang Y, Zhang S, Shi S, Gong Y (2015) Substrate independent coating formation and anti-biofouling performance improvement of mussel inspired polydopamine. J Mater Chem B 3(20):4181–4190

    CAS  PubMed  Google Scholar 

  • Fouda MM, Abdel-Halim ES, Al-Deyab SS (2013) Antibacterial modification of cotton using nanotechnology. Carbohydr Polym 92(2):943–954

    CAS  PubMed  Google Scholar 

  • Ghartavol MM, Aziz SGG, Babaei G, Farjah GH, Ansari MHK (2019) The protective impact of betaine on the tissue structure and renal function in isoproterenol-induced myocardial infarction in rat. Mol Genet Genom Med 7(4):579

    Google Scholar 

  • Harifi T, Montazer M (2015) A review on textile sonoprocessing: a special focus on sonosynthesis of nanomaterials on textile substrates. Ultrason Sonochem 23:1–10

    CAS  PubMed  Google Scholar 

  • Harris CA, Resau JH, Hudson EA, West RA, Moon C, Black AD, McAllister JP (2011) Reduction of protein adsorption and macrophage and astrocyte adhesion on ventricular catheters by polyethylene glycol and N-acetyl-L-cysteine. J Biomed Mater Res A 98(3):425–433

    PubMed  Google Scholar 

  • He L, Gao C, Li S, Chung CTW, Xin JH (2017) Non-leaching and durable antibacterial textiles finished with reactive zwitterionic sulfobetaine. J Ind Eng Chem Mater 46:373–378

    CAS  Google Scholar 

  • Hoque J, Akkapeddi P, Yarlagadda V, Uppu DS, Kumar P, Haldar J (2012) Cleavable cationic antibacterial amphiphiles: synthesis, mechanism of action, and cytotoxicities. Langmuir 28(33):2225–2234

    Google Scholar 

  • Huang Z, Li Y, Ai Z, Wang N, Pan Z, Xie X, Fan H, Suo B (2014) Effects of betaine on the growth of Staphylococcus aureus and the establishment of inactivation model. J Chin Inst Food Sci Technol 14:42–48

    CAS  Google Scholar 

  • Jurewicz J, Radwan M, Wielgomas B, Kaluzny P, Klimowska A, Radwan P, Hanke W (2018) Environmental levels of triclosan and male fertility. Environ Sci Pollut Res Int 25(10):5484–5490

    CAS  PubMed  Google Scholar 

  • Kishitani S, Takanami T, Suzuki M, Oikawa M, Yokoi S, Ishitani M, Alvarez-Nakase AM, Takabe T (2000) Compatibility of glycinebetaine in rice plants: evaluation using transgenic rice plants with a gene for peroxisomal betaine aldehyde dehydrogenase from barley. Plant Cell Environ 23:107–114

    CAS  Google Scholar 

  • Kritchenkov AS, Egorov AR, Dysin AP, Volkova OV, Zabodalova LA, Suchkova EP, Kurliuk AV, Shakola TV (2019) Ultrasound-assisted Cu(I)-catalyzed azide-alkyne click cycloaddition as polymer-analogous transformation in chitosan chemistry. High antibacterial and transfection activity of novel triazol betaine chitosan derivatives and their nanoparticles. Int J Biol Macromol 137:592–603

    CAS  PubMed  Google Scholar 

  • Lever M, Slow S (2010) The clinical significance of betaine, an osmolyte with a key role in methyl group metabolism. Clin Biochem 43(9):732–744

    CAS  PubMed  Google Scholar 

  • Li L, Jin Y, Zhou H, Wang H (2018) Synthesis of zwitterionic N-chlorohydantoins for antibacterial applications. Bioorg Med Chem Lett 28(23):3665–3669

    CAS  PubMed  Google Scholar 

  • Lindstedt M, Allenmark S, Thompson RA, Edebo L (1990) Antimicrobial activity of betaine esters, quaternary ammonium amphiphiles which spontaneously hydrolyze into nontoxic components. Antimicrob Agents Chemother 34(10):1949–1954

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu S, Zhou H, Wang H, Yang W, Shao H, Fu S, Feng Z, Lin T (2017) Argon-plasma reinforced superamphiphobic fabrics. Small 13(40):1701891

    Google Scholar 

  • Liu G, Xiang J, Xia Q, Li K, Lan T, Yu L (2018) Superhydrophobic cotton gauze with durably antibacterial activity as skin wound dressing. Cellulose 26(2):1383–1397

    Google Scholar 

  • Lu L, Hu C, Zhu Y, Zhang H, Li R, Xing Y (2018) Multi-functional finishing of cotton fabrics by water-based layer-by-layer assembly of metal–organic framework. Cellulose 25(7):4223–4238

    CAS  Google Scholar 

  • Pan Y, Yang P, Moloney MG, Wang L, Ma F, Wang Y (2018) Ag NP-loaded cotton fiber materials: preparation, surface deposition, and antibacterial activity with different chemical structures. ACS Appl Biol Mater 2(1):510–517

    Google Scholar 

  • Peddie BA, Wong-She J, Randall K, Lever M, Chambers ST (1998) Osmoprotective properties and accumulation of betaine analogues by Staphylococcus aureus. Fems Microbiol Lett 160(1):25–30

    CAS  PubMed  Google Scholar 

  • Pu Y, Hou Z, Khin MM, ZamudioVazquez R, Poon KL, Duan H, ChanPark MB (2017) Synthesis and antibacterial study of sulfobetaine/quaternary ammonium-modified star-shaped poly[2-(dimethylamino)ethylmethacrylate]-mased copolymers with an inorganic core. Biomacromol 18(1):44–55

    CAS  Google Scholar 

  • Qiao Z, Yao Y, Song S, Yin M, Luo J (2019) Silver nanoparticles with pH induced surface charge switchable properties for antibacterial and antibiofilm applications. J Mater Chem 7(5):830–840

    CAS  Google Scholar 

  • Rauytanapanit M, Opitakorn A, Terashima M, Waditee-Sirisattha R, Praneenararat T (2018) Antibacterial cotton fabrics based on hydrophilic amino-containing scaffolds. Colloid Surface B 164:42–49

    CAS  Google Scholar 

  • Reinoso DM, Damiani DE, Tonetto GM (2012) Zinc carboxylic salts used as catalyst in the biodiesel synthesis by esterification and transesterification: study of the stability in the reaction medium. Appl Catal A Gen 449:88–95

    CAS  Google Scholar 

  • Reshma A, Priyadarisini VB, Amutha K (2018) Sustainable antimicrobial finishing of fabrics using natural bioactive agents—a review. Int J Life Sci Pharma Res 8(4):10–20

    CAS  Google Scholar 

  • Rovira J, Domingo JL (2019) Human health risks due to exposure to inorganic and organic chemicals from textiles: a review. Environ Res 168:62–69

    CAS  PubMed  Google Scholar 

  • Shahid M, Mohammad F, Chen G, Tang RC, Xing T (2016) Enzymatic processing of natural fibres: white biotechnology for sustainable development. Green Chem 18(8):2256–2281

    CAS  Google Scholar 

  • Shahidul I, Shahid M, Mohammad F (2013) Green chemistry approaches to develop antimicrobial textiles based on sustainable biopolymers—a review. Ind Eng Chem Res 52(15):5245–5260

    Google Scholar 

  • Shahidul Islam SUI, Butola BS, Mohammad F (2016) Silver nanomaterials as future colorants and potential antimicrobial agents for natural and synthetic textile materials. RSC Adv 6(50):44232–44247

    CAS  Google Scholar 

  • Song L, Sun L, Zhao J, Wang X, Yin J, Luan S, Ming W (2019) Synergistic superhydrophobic and photodynamic cotton textiles with remarkable antibacterial activities. ACS Appl Biol Mater 2(7):2756–2765

    CAS  Google Scholar 

  • Su Y, Guo Q, Wang S, Zhang X, Wang J (2018) Effects of betaine supplementation on L-threonine fed-batch fermentation by Escherichia coli. Bioproc Biosyst Eng 41(10):1509–1518

    CAS  Google Scholar 

  • Turck D, Bresson J-L, Burlingame B et al (2017) Safety of betaine as a novel food pursuant to regulation. Efsa J 15(11):1831–4732

    Google Scholar 

  • Wang B, Zhang Y, Mao Z, Yu D, Gao C (2014) Toxicity of ZnO nanoparticles to macrophages due to cell uptake and intracellular release of zinc ions. J Nanosci Nanotechnol 14(8):5688–5696

    CAS  PubMed  Google Scholar 

  • Wehrs M, Wehrs JM, Liu Y, Platz L, Prahl JP, Moon J, Papa G, Sundstrom E, Geiselman GM, Tanjore D, Keasling JD, Pray TR, Simmons BA, Mukhopadhyay A (2019) Green Chemistry Sustainable bioproduction of the blue pigment indigoidine: expanding the range of heterologous products in R toruloides to include non-ribosomal peptides. Green Chem 21:3394–3406

    CAS  Google Scholar 

  • Windler L, Height M, Nowack B (2013) Comparative evaluation of antimicrobials for textile applications. Environ Int 53:62–73

    CAS  PubMed  Google Scholar 

  • Xu K, Xu P (2014) Betaine beet molasses enhance L-lactic acid production by Bacillus coagulans. Plos One 9(6):100731

    Google Scholar 

  • Xu Q, Li R, Shen L, Xu W, Wang J, Jiang Q, Zhang L, Fu F, Fu Y, Liu X (2019a) Enhancing the surface affinity with silver nano-particles for antibacterial cotton fabric by coating carboxymethyl chitosan and L-cysteine. Appl Surf Sci 497:143673

    CAS  Google Scholar 

  • Xu Q, Zheng W, Duan P, Chen J, Zhang Y, Fu F, Diao H, Liu X (2019b) One-pot fabrication of durable antibacterial cotton fabric coated with silver nanoparticles via carboxymethyl chitosan as a binder and stabilizer. Carbohydr Polym 204:42–49

    CAS  PubMed  Google Scholar 

  • Xu Q, Shen L, Duan P, Zhang L, Fu F, Liu X (2020) Superhydrophobic cotton fabric with excellent healability fabricated by the “grafting to” method using a diblock copolymer mist. Chem Eng J 379:122401

    Google Scholar 

  • Yetisen AK, Qu H, Manbachi A, Butt H, Dokmeci MR, Hinestroza JP, Skorobogatiy M, Khademhosseini A, Yun SH (2016) Nanotechnology in textiles. ACS Nano 10(3):3042–3068

    CAS  PubMed  Google Scholar 

  • Zhang S, Yang X, Tang B, Yuan L, Wang K, Liu X, Zhu X, Li J, Ge Z, Chen S (2018) New insights into synergistic antimicrobial and antifouling cotton fabrics via dually finished with quaternary ammonium salt and zwitterionic sulfobetaine. Chem Eng J 336:123–132

    CAS  Google Scholar 

  • Zhao S, Zhang Q, Hao G, Liu X, Zhao J, Chen Y, Zhang H, Chen W (2014) The protective role of glycine betaine in Lactobacillus plantarum ST-III against salt stress. Food Control 44: 208–213

    CAS  Google Scholar 

  • Zhu C, Chalmers E, Chen L, Wang Y, Xu B, Li L, Liu X (2019) A nature-inspired, flexible substrate strategy for future wearable electronics. Small 15(35):1902440

    Google Scholar 

  • Zou H, Wu Z, Xian M, Liu H, Cheng T, Cao Y (2013) Not only osmoprotectant: Betaine increased lactate dehydrogenase activity and L-lactate production in Lactobacilli. Bioresour Technol 148:591–595

    CAS  PubMed  Google Scholar 

  • Zou H, Chen N, Shi M, Xian M, Song Y, Liu J (2016) The metabolism and biotechnological application of betaine in microorganism. Appl Microbiol Biol 100(9):3865–3876

    CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by National Natural Science Foundation of China (Grant Numbers 51873195 and 51573167).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongyan Diao or Xiangdong Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 22390 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, P., Xu, Q., Zhang, X. et al. Naturally occurring betaine grafted on cotton fabric for achieving antibacterial and anti-protein adsorption functions. Cellulose 27, 6603–6615 (2020). https://doi.org/10.1007/s10570-020-03228-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-020-03228-0

Keywords

Navigation