Skip to main content
Log in

Stable nanocellulose gels prepared by crosslinking of surface charged cellulose nanofibrils with di- and triiodoalkanes

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Nanocellulose gels were prepared by a new chemical crosslinking approach. Carboxy group containing cellulose nanofibrils, which were prepared by (2,2,6,6-tetramethylpiperidin-1-yl)oxidanyl (TEMPO) mediated oxidation, were reacted with two different diiodoalkanes and one triiodoalkane in DMSO/water dispersions at elevated temperatures. Mechanically stable gels were obtained that were characterized with respect to chemical and physical properties. It was confirmed by FTIR spectroscopy that crosslinking of TEMPO oxidized cellulose nanofibrils (TCNF) occurs by the formation of ester bonds. The kinetics of gel formation were evaluated by oscillatory rheology experiments. For long alkyl chain cross-linkers, namely 1,4-diiodobutane and 1,10-diiododecane, the initial gel was formed within a short time (gel point < 5 min) and further evolved upon time for about 0.5–2 h. For the short crosslinker triiodomethane, gel formation was slower and resulted in lower mechanical strength.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdul Khalil HPS, Bhat AH, Ireana Yusra AF (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohyd Polym 87:963–979

    CAS  Google Scholar 

  • Abe K, Yano H (2012) Cellulose nanofiber-based hydrogels with high mechanical strength. Cellulose 19:1907–1912

    CAS  Google Scholar 

  • Afsahi G, Dimic-Misic K, Gane P, Budtova T, Maloney T, Vuorinen T (2018) The investigation of rheological and strength properties of NFC hydrogels and aerogels from hardwood pulp by short catalytic bleaching (Hcat). Cellulose 25:1637–1655

    CAS  Google Scholar 

  • Aitomäki Y, Oksman K (2014) Reinforcing efficiency of nanocellulose in polymers. React Funct Polym 85:151–156

    Google Scholar 

  • Besbes I, Alila S, Boufi S (2011) Nanofibrillated cellulose from TEMPO-oxidized eucalyptus fibres: effect of the carboxyl content. Carbohyd Polym 84:975–983

    CAS  Google Scholar 

  • Brinchi L, Germani R, Savelli G (2003) Efficient esterification of carboxylic acids with alkyl halides catalyzed by fluoride ions in ionic liquids. Tetrahedron Lett 44:6583–6585

    CAS  Google Scholar 

  • Buwalda SJ, Vermonden T, Hennink WE (2017) Hydrogels for therapeutic delivery: current developments and future directions. Biomacromol 18:316–330

    CAS  Google Scholar 

  • Chinga-Carrasco G, Syverud K (2014) Pretreatment-dependent surface chemistry of wood nanocellulose for pH-sensitive hydrogels. J Biomater Appl 29:423–432

    PubMed  PubMed Central  Google Scholar 

  • Coates J (2006) Interpretation of infrared spectra, a practical approach. In: Meyers RA (ed) Encyclopedia of analytical chemistry. Wiley, Chichester, pp 10815–10837

    Google Scholar 

  • Cox BG (2015) Acids, bases, and salts in mixed-aqueous solvents. Org Process Res Dev 19:1800–1808

    CAS  Google Scholar 

  • De France KJ, Hoare T, Cranston ED (2017) Review of hydrogels and aerogels containing nanocellulose. Chem Mater 29:4609–4631

    Google Scholar 

  • Deng S, Huang R, Zhou M, Chen F, Fu Q (2016) Hydrophobic cellulose films with excellent strength and toughness via ball milling activated acylation of microfibrillated cellulose. Carbohydr Polym 154:129–138

    CAS  PubMed  Google Scholar 

  • Dong H, Snyder JF, Tran DT, Leadore JL (2013a) Hydrogel, aerogel and film of cellulose nanofibrils functionalized with silver nanoparticles. Carbohydr Polym 95:760–767

    CAS  PubMed  Google Scholar 

  • Dong H, Snyder JF, Williams KS, Andzelm JW (2013b) Cation-induced hydrogels of cellulose nanofibrils with tunable moduli. Biomacromol 14:3338–3345

    CAS  Google Scholar 

  • Donius AE, Liu A, Berglund LA, Wegst UG (2014) Superior mechanical performance of highly porous, anisotropic nanocellulose-montmorillonite aerogels prepared by freeze casting. J Mech Behav Biomed Mater 37:88–99

    CAS  PubMed  Google Scholar 

  • Eyley S, Thielemans W (2014) Surface modification of cellulose nanocrystals. Nanoscale 6:7764–7779

    CAS  PubMed  Google Scholar 

  • Fujisawa S, Saito T, Kimura S, Iwata T, Isogai A (2013) Surface engineering of ultrafine cellulose nanofibrils toward polymer nanocomposite materials. Biomacromol 14:1541–1546

    CAS  Google Scholar 

  • Heinze T, El Seoud OA, Koschella A (2018) Cellulose derivatives: synthesis, structure and properties. In: Heinze T, El Seoud OA, Koschella A (eds) Cellulose derivatives: synthesis, structure, and properties. Springer, Cham, pp 429–477

    Google Scholar 

  • Hennis HE, Easterly JP, Collins LR, Thompson LR (1967) Esters from reactions of alkyl halides and salts of carboxylic acids. Reactions of primary alkyl chlorides and sodium Salts of carboxylic acids. I&EC Prod Res Dev 6:193–195

    CAS  Google Scholar 

  • Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85

    CAS  Google Scholar 

  • Jausovec D, Vogrincic R, Kokol V (2015) Introduction of aldehyde vs. carboxylic groups to cellulose nanofibers using laccase/TEMPO mediated oxidation. Carbohydr Polym 116:74–85

    CAS  PubMed  Google Scholar 

  • Jiang F, Han S, Hsieh Y-L (2013) Controlled defibrillation of rice straw cellulose and self-assembly of cellulose nanofibrils into highly crystalline fibrous materials. RSC Adv 3:12366

    CAS  Google Scholar 

  • Liu J, Chinga-Carrasco G, Cheng F, Xu W, Willför S, Syverud K, Xu C (2016) Hemicellulose-reinforced nanocellulose hydrogels for wound healing application. Cellulose 23:3129–3143

    CAS  Google Scholar 

  • Liu M et al (2017a) Injectable hydrogels for cartilage and bone tissue engineering. Bone Res 5:17014

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu P, Mai C, Zhang K (2017b) Formation of uniform multi-stimuli-responsive and multiblock hydrogels from dialdehyde cellulose. ACS Sustain Chem Eng 5:5313–5319

    CAS  Google Scholar 

  • Marcus Y (2007) Preferential solvation of ions in mixed solvents. 5. The alkali metal, silver, and thallium(I) cations in aqueous organic solvents according to the inverse Kirkwood–Buff integral (IKBI) approach. J Sol Chem 36:1385–1399

    CAS  Google Scholar 

  • Matsumoto K et al (2014) Simple and convenient synthesis of esters from carboxylic acids and alkyl halides using tetrabutylammonium fluoride. J Oleo Sci 63:539–544

    CAS  PubMed  Google Scholar 

  • Naderi A, Lindström T, Sundström J (2014) Carboxymethylated nanofibrillated cellulose: rheological studies. Cellulose 21:1561–1571

    CAS  Google Scholar 

  • Naderi A, Lindström T, Sundström J, Pettersson T, Flodberg G, Erlandsson J (2015) Microfluidized carboxymethyl cellulose modified pulp: a nanofibrillated cellulose system with some attractive properties. Cellulose 22:1159–1173

    CAS  Google Scholar 

  • Nicholson DJ, Leavitt AT, Francis RC (2014) A three stage Klason method for more accurate determinations of hardwood lignin content. Cell Chem Technol 48:53–59

    CAS  Google Scholar 

  • Nordenstrom M, Fall A, Nystrom G, Wagberg L (2017) Formation of colloidal nanocellulose glasses and gels. Langmuir 33:9772–9780

    PubMed  Google Scholar 

  • Okita Y, Fujisawa S, Saito T, Isogai A (2011) TEMPO-oxidized cellulose nanofibrils dispersed in organic solvents. Biomacromol 12:518–522

    CAS  Google Scholar 

  • Park M, Lee D, Hyun J (2015) Nanocellulose-alginate hydrogel for cell encapsulation. Carbohydr Polym 116:223–228

    CAS  PubMed  Google Scholar 

  • Phaodee P, Tangjaroensirirat N, Sakdaronnarong C (2014) Biobased polystyrene foam-like material from crosslinked cassava starch and nanocellulose from sugarcane. BioResources 10:348–368

    Google Scholar 

  • Philipp B, Schleicher H, Wagenknecht W (1973) The influence of cellulose structure on the swelling of cellulose in organic liquids. J Polym Sci Polym Symp 42:1531–1543

    Google Scholar 

  • Puls J, Janzon R, Saake B (2006) Comparative removal of hemicelluloses from paper pulps using Nitren, Cuen, NaOH and KOH. Lenzinger Ber 86:63–70

    CAS  Google Scholar 

  • Rol F, Belgacem MN, Gandini A, Bras J (2019) Recent advances in surface-modified cellulose nanofibrils. Progr Polym Sci 88:241–264

    CAS  Google Scholar 

  • Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromol 8:2485–2491

    CAS  Google Scholar 

  • Saito T, Uematsu T, Kimura S, Enomae T, Isogai A (2011) Self-aligned integration of native cellulose nanofibrils towards producing diverse bulk materials. Soft Matter 7:8804–8809

    CAS  Google Scholar 

  • Sehaqui H, Zhou Q, Berglund LA (2011) High-porosity aerogels of high specific surface area prepared from nanofibrillated cellulose (NFC). Comp Sci Technol 71:1593–1599

    CAS  Google Scholar 

  • Syverud K, Pettersen SR, Draget K, Chinga-Carrasco G (2014) Controlling the elastic modulus of cellulose nanofibril hydrogels scaffolds with potential in tissue engineering. Cellulose 22:473–481

    Google Scholar 

  • Thomas B et al (2018) Nanocellulose, a versatile green platform: from biosources to materials and their applications. Chem Rev 118:11575–11625

    CAS  Google Scholar 

  • Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. J Appl Polym Sci Appl Polym Symp USA. In: Cellulose conference, Syracuse, NY, USA, 24 May 1982.; ITT Rayonier Inc., Shelton

  • Wågberg L, Decher G, Norgren M, Lindström T, Ankerfors M, Axnäs K (2008) The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. Langmuir 24:784–795

    Google Scholar 

  • Wang W, Li F, Yu J, Navard P, Budtova T (2015) Influence of substitution on the rheological properties and gelation of hydroxyethyl cellulose solution in NaOH–water solvent. Carbohydr Polym 124:85–89

    CAS  PubMed  Google Scholar 

  • Zander NE, Dong H, Steele J, Grant JT (2014) Metal cation cross-linked nanocellulose hydrogels as tissue engineering substrates. ACS Appl Mater Interfaces 6:18502–18510

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank our colleagues from Domsjö fabriker AB (Sweden) for supplying the never dried sulfite pulp on which this experiment was conducted. The authors thank the Slovenian Research Agency within the research program P4-0015 and the Slovene science foundation for their financial support. The authors also acknowledge the Ministry of Education, Science and Sport of the Republic of Slovenia for financial support of the “young scientist” programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Primož Oven.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 510 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levanič, J., Gericke, M., Heinze, T. et al. Stable nanocellulose gels prepared by crosslinking of surface charged cellulose nanofibrils with di- and triiodoalkanes. Cellulose 27, 2053–2068 (2020). https://doi.org/10.1007/s10570-019-02947-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-019-02947-3

Keywords

Navigation