Skip to main content
Log in

Birefringence-based orientation mapping of cellulose nanofibrils in thin films

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Determination of nanofibril orientation is crucial for predicting the properties of films and membranes made from cellulose nanofibrils (CNF) because of their inherent anisotropic nature. A novel method is proposed based on image analysis of the polarized light micrographs to quantify and map nanofibril orientation in the film structure. Thin films (average 30 µm in thickness) of CNF were produced using a filtration method and were wet-stretched to two extension levels. Randomly-oriented films were also produced as the control without applying stretch. Samples were imaged at − 45°, 0° and + 45° between crossed polarizers using a polarized light microscope. A BOI was developed based on the interference color changes between the two angles (+ 45° and − 45°). The proposed BOI values range between − 1 and + 1 differentiating orientation in perpendicular directions. The index was shown to work successfully for mapping of the fibril orientation in CNF films. Statistical analysis of the tensile test results confirmed significant difference between tensile modulus of CNF films produced using different stretch ratios. This difference was also supported by the good agreement between the tensile properties of the films, the BOI and directionality results obtained from the surface analysis of scanning electron micrographs. The method was validated by applying to single pulp fibers with known orientation as well as un-stretched and stretched polyvinyl chloride films and oriented cellulose nanocrystals. The advantages of the proposed method over other conventional methods used for orientation analysis are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

CNF:

Cellulose nanofibrils

CNC:

Cellulose nanocrystals

PVC:

Polyvinyl chloride

PLM:

Polarized light microscopy

BOI:

Birefringence orientation index

References

  • Abd Manaf ME, Tsuji M, Nobukawa S, Yamaguchi M (2011) Effect of moisture on the orientation birefringence of cellulose esters. Polymers 3(2):955

    Article  CAS  Google Scholar 

  • Abe H, Funada R (2005) Review—The orientation of cellulose microfibrils in the cell walls of tracheids in conifers. IAWA J 26(2):161

    Article  Google Scholar 

  • Amini E, Tajvidi M, Gardner DJ, Bousfield DW (2017) Utilization of cellulose nanofibrils as a binder for particleboard manufacture. BioResources 12:4093–4110

    Article  CAS  Google Scholar 

  • Arteaga O, Baldrís M, Antó J, Canillas A, Pascual E, Bertran E (2014) Mueller matrix microscope with a dual continuous rotating compensator setup and digital demodulation. Appl Opt 53:2236

    Article  PubMed  Google Scholar 

  • Bergström J (2015) Mechanics of solid polymers: theory and computational modeling. William Andrew Publishing, New York

    Google Scholar 

  • Bi X, Li G, Doty SB, Camacho NP (2005) A novel method for determination of collagen orientation in cartilage by Fourier transform infrared imaging spectroscopy (FT-IRIS). Osteoarthr Cartil 13(12):1050

    Article  CAS  Google Scholar 

  • Chowdhury RA, Peng SX, Youngblood J (2017) Improved order parameter (alignment) determination in cellulose nanocrystal (CNC) films by a simple optical birefringence method. Cellulose 24(5):1957

    Article  CAS  Google Scholar 

  • Davidson MW (2019) The first order (full wave) retardation plate. https://www.olympus-lifescience.com/en/microscope-resource/primer/techniques/polarized/firstorderplate. Accessed 14 June 2019

  • Duckett KE, Tripp VW (1967) X-ray and optical orientation measurements on single cotton fibers. Text Res J 37(6):517

    Article  CAS  Google Scholar 

  • Dufresne A (2013) Nanocellulose: a new ageless bionanomaterial. Mater Today 16(6):220

    Article  CAS  Google Scholar 

  • Dufresne A (2017) Cellulose nanomaterial reinforced polymer nanocomposites. Curr Opin Colloid Interface Sci 29:1

    Article  CAS  Google Scholar 

  • Ebeling T, Paillet M, Borsali R, Diat O, Dufresne A, Cavaille JY, Chanzy H (1999) Shear-induced orientation phenomena in suspensions of cellulose microcrystals, revealed by small angle X-ray scattering. Langmuir 15(19):6123

    Article  CAS  Google Scholar 

  • Fall AB, Lindstrom SB, Sprakel J, Wagberg L (2013) A physical cross-linking process of cellulose nanofibril gels with shear-controlled fibril orientation. Soft Matter 9(6):1852

    Article  CAS  Google Scholar 

  • Ghasemi S, Tajvidi M, Bousfield DW, Gardner DJ, Gramlich WM (2017) Dry-spun neat cellulose nanofibril filaments: influence of drying temperature and nanofibril structure on filament properties. Polymers 9(9):392

    Article  PubMed Central  CAS  Google Scholar 

  • Ghasemi S, Tajvidi M, Bousfield DW, Gardner DJ (2018a) Reinforcement of natural fiber yarns by cellulose nanomaterials: a multi-scale study. Ind Crops Prod 111:471

    Article  CAS  Google Scholar 

  • Ghasemi S, Tajvidi M, Gardner DJ, Bousfield DW, Shaler SM (2018b) Effect of wettability and surface free energy of collection substrates on the structure and morphology of dry-spun cellulose nanofibril filaments. Cellulose 25(11):6305

    Article  CAS  Google Scholar 

  • Gierlinger N, Luss S, Konig C, Konnerth J, Eder M, Fratzl P (2010) Cellulose microfibril orientation of Picea abies and its variability at the micron-level determined by Raman imaging. J Exp Bot 61(2):587

    Article  CAS  PubMed  Google Scholar 

  • Gilbert M (1994) Crystallinity in poly (vinyl chloride). J Macromol Sci C 34(1):77

    Article  Google Scholar 

  • Gindl W, Martinschitz KJ, Boesecke P, Keckes J (2006) Changes in the molecular orientation and tensile properties of uniaxially drawn cellulose films. Biomacromol 7(11):3146

    Article  CAS  Google Scholar 

  • Gindl W, Reifferscheid M, Adusumalli RB, Weber H, Roder T, Sixta H, Schoberl T (2008) Anisotropy of the modulus of elasticity in regenerated cellulose fibres related to molecular orientation. Polymer 49(3):792

    Article  CAS  Google Scholar 

  • Hakansson KMO, Fall AB, Lundell F, Yu S, Krywka C, Roth SV, Santoro G, Kvick M, Wittberg LP, Wagberg L, Soderberg LD (2014) Hydrodynamic alignment and assembly of nanofibrils resulting in strong cellulose filaments. Nat Commun 5:4018

    Article  PubMed  CAS  Google Scholar 

  • Hassan EA, Hassan ML, Abou-zeid RE, El-Wakil NA (2016) Novel nanofibrillated cellulose/chitosan nanoparticles nanocomposites films and their use for paper coating. Ind Crops Prod 93:219

    Article  CAS  Google Scholar 

  • Josefsson G, Ahvenainen P, Mushi NE, Gamstedt EK (2015) Fibril orientation redistribution induced by stretching of cellulose nanofibril hydrogels. J Appl Phys 117(21):214311

    Article  CAS  Google Scholar 

  • Kadimi A, Benhamou K, Ounaies Z, Magnin A, Dufresne A, Kaddami H, Raihane M (2014) Electric field alignment of nanofibrillated cellulose (NFC) in silicone oil: impact on electrical properties. ACS Appl Mater Interfaces 6(12):9418

    Article  CAS  PubMed  Google Scholar 

  • Kobe R, Iwamoto S, Endo T, Yoshitani K, Teramoto Y (2016) Stretchable composite hydrogels incorporating modified cellulose nanofiber with dispersibility and polymerizability: mechanical property control and nanofiber orientation. Polymer 97:480

    Article  CAS  Google Scholar 

  • Kojima Y, Minamino J, Isa A, Suzuki S, Ito H, Makise R, Okamoto M (2013) Binding effect of cellulose nanofibers in wood flour board. J Wood Sci 59(5):396

    Article  CAS  Google Scholar 

  • Kuntman E, Arteaga O, Anto J, Cayuela D, Bertran E (2015) Conversion of a polarization microscope into a Mueller matrix microscope application to the measurement of textile fibers. Opt Pura Appl 48(4):309

    Article  Google Scholar 

  • Liu Z-Q (1991) Scale space approach to directional analysis of images. Appl Opt 30(11):1369

    Article  CAS  PubMed  Google Scholar 

  • Liu JG, Mason PJ (2016) Image processing and GIS for remote sensing: techniques and applications. Wiley, Hoboken

    Book  Google Scholar 

  • Mashkour M, Kimura T, Kimura F, Mashkour M, Tajvidi M (2014a) Tunable self-assembly of cellulose nanowhiskers and polyvinyl alcohol chains induced by surface tension torque. Biomacromol 15(1):60

    Article  CAS  Google Scholar 

  • Mashkour M, Kimura T, Kimura F, Mashkour M, Tajvidi M (2014b) One-dimensional core–shell cellulose-akaganeite hybrid nanocrystals: synthesis, characterization, and magnetic field induced self-assembly. RSC Adv 4(94):52542

    Article  CAS  Google Scholar 

  • Mashkour M, Kimura T, Mashkour M, Kimura F, Tajvidi M (2019) Printing birefringent figures by surface tension-directed self-assembly of a cellulose nanocrystal/polymer ink components. ACS Appl Mater Interfaces 11(1):1538

    Article  CAS  PubMed  Google Scholar 

  • Mazhari Mousavi SM, Afra E, Tajvidi M, Bousfield DW, Dehghani-Firouzabadi M (2018) Application of cellulose nanofibril (CNF) as coating on paperboard at moderate solids content and high coating speed using blade coater. Prog Org Coat 122:207

    Article  CAS  Google Scholar 

  • McLean JP, Evans R, Moore JR (2010) Predicting the longitudinal modulus of elasticity of Sitka spruce from cellulose orientation and abundance. Holzforschung 64(4):495

    Article  CAS  Google Scholar 

  • Mendoza-Galvan A, Tejeda-Galan T, Dominquez-Gomez AB, Mauricio-Sanchez RA, Jarrendahl K, Arwin H (2019) Linear birefringent films of cellulose nanocrystals produced by dip-coating. Nanomaterials 9(1):45

    Article  CAS  Google Scholar 

  • Newton RH, Brown JY, Meek KM (1996) Polarized light microscopy technique for quantitatively mapping collagen fibril orientation in cornea. In: Optical biopsies and microscopic techniques, vol 2926. International Society for Optics and Photonics, pp 278–284. https://doi.org/10.1117/12.260805

  • Nissila T, Karhula SS, Saarakkala S, Oksman K (2018) Cellulose nanofiber aerogels impregnated with bio-based epoxy using vacuum infusion: structure, orientation and mechanical properties. Compos Sci Technol 155:64

    Article  CAS  Google Scholar 

  • Nobukawa S, Enomoto-Rogers Y, Shimada H, Iwata T, Yamaguchi M (2015) Effect of acetylation site on orientation birefringence of cellulose triacetate. Cellulose 22(5):3003

    Article  CAS  Google Scholar 

  • Ross RJ (2010) Wood handbook: wood as an engineering material USDA Forest Service, Forest Products Laboratory, General Technical Report FPL-GTR-190

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sehaqui H, Mushi NE, Morimune S, Salajkova M, Nishino T, Berglund LA (2012) Cellulose nanofiber orientation in nanopaper and nanocomposites by cold drawing. ACS Appl Mater Interfaces 4(2):1043

    Article  CAS  PubMed  Google Scholar 

  • Sørensen BE (2012) A revised Michel-Lévy interference colour chart based on first-principles calculations. Eur J Mineral 25(1):5

    Article  CAS  Google Scholar 

  • Sun L, Singh S, Joo M, Vega-Sanchez M, Ronald P, Simmons BA, Adams P, Auer M (2016) Non-invasive imaging of cellulose microfibril orientation within plant cell walls by polarized Raman microspectroscopy. Biotechnol Bioeng 113(1):82

    Article  CAS  PubMed  Google Scholar 

  • Sun W, Tajvidi M, Hunt CG, McIntyre G, Gardner DJ (2019) Fully bio-based hybrid composites made of wood, fungal mycelium and cellulose nanofibrils. Sci Rep 9(1):3766

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tayeb HA, Amini E, Ghasemi S, Tajvidi M (2018) Cellulose nanomaterials-binding roperties and applications: a review. Molecules 23(10):2684

    Article  PubMed Central  CAS  Google Scholar 

  • Uetani K, Koga H, Nogi M (2019) Estimation of the intrinsic birefringence of cellulose using bacterial cellulose nanofiber films. ACS Macro Lett 8:250

    Article  CAS  Google Scholar 

  • Ye C, Sundström MO, Remes K (1994) Microscopic transmission ellipsometry: measurement of the fibril angle and the relative phase retardation of single, intact wood pulp fibers. Appl Opt 33(28):6626

    Article  CAS  PubMed  Google Scholar 

  • Ye DD, Cheng QY, Zhang QL, Wang YX, Chang CY, Li LB, Peng HY, Zhang LN (2017) Deformation drives alignment of nanofibers in framework for inducing anisotropic cellulose hydrogels with high toughness. ACS Appl Mater Interfaces 9(49):43154

    Article  CAS  PubMed  Google Scholar 

  • Yildirim N, Shaler S (2016) The application of nanoindentation for determination of cellulose nanofibrils (CNF) nanomechanical properties. Mater Res Express 3(10):105017

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank USDA National Institute of Food and Agriculture McIntire-Stennis Program for financial support.

Funding

This project was funded by the USDA National Institute of Food and Agriculture, McIntire-Stennis project number ME0-41616 through the Maine Agricultural & Forest Experiment Station. Maine Agricultural and Forest Experiment Station Publication Number 3714.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript. Shokoofeh Ghasemi, Parinaz Rahimzadeh-Bajgiran and Mehdi Tajvidi developed the method to produce the orientation index. Shokoofeh Ghasemi prepared and tested CNF film samples, Parinaz Rahimzadeh-Bajgiran performed image analysis. All authors contributed to the analysis and discussions.

Corresponding author

Correspondence to Mehdi Tajvidi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 49701 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghasemi, S., Rahimzadeh-Bajgiran, P., Tajvidi, M. et al. Birefringence-based orientation mapping of cellulose nanofibrils in thin films. Cellulose 27, 677–692 (2020). https://doi.org/10.1007/s10570-019-02821-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-019-02821-2

Keywords

Navigation