Skip to main content
Log in

A hybrid binder of carboxymethyl chitosan and l-methionine enables a slight amount of Ag NPs to be durably effective on antibacterial cotton fabrics

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

This work proposes a facile approach to improve the durability of antibacterial cotton fabric by using carboxymethyl chitosan (CMC) and l-methionine (Met) as a combination binder to immobilize silver nanoparticles (Ag NPs). The durable antibacterial function is achieved by grafting CMC and Met molecules onto a cotton fabric by a simple pad-dry-cure process, followed by the preparation of Ag NPs on the modified surface. This surface modification process provides the cotton fabric with an excellent antibacterial effect and outstanding laundering durability. Structural analyses of the modified surface revealed that the covalent bonds between Met, CMC, and cotton fibers were formed, and the thioether groups caused the stable immobilization of the Ag NPs. Notably, the modification process does not significantly damage the original fiber structure. The desired cotton properties such as vapor permeability, water absorptivity, and flexibility of the modified fabric were very close to the original cotton. Moreover, the safety to human skin was verified by cytotoxicity tests using fibroblast cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Balakumaran MD, Ramachandran R, Jagadeeswari S, Kalaichelvan PT (2016) In vitro biological properties and characterization of nanosilver coated cotton fabrics—an application for antimicrobial textile finishing. Int Biodeter Biodegr 107:48–55

    CAS  Google Scholar 

  • Bozaci E, Akar E, Ozdogan E, Demir A, Altinisik A, Seki Y (2015) Application of carboxymethylcellulose hydrogel based silver nanocomposites on cotton fabrics for antibacterial property. Carbohydr Polym 134:128–135

    CAS  PubMed  Google Scholar 

  • Bu GJ, Wang CX, Fu SH, Tian AL (2012) Water-soluble cationic chitosan derivative to improve pigment-based inkjet printing and antibacterial properties for cellulose substrates. J Appl Polym Sci 125:1674–1680

    CAS  Google Scholar 

  • Cai DR, Zhou J, Duan PP, Luo GY, Zhang YY, Fu FY, Liu XD (2018) A hierarchical structure of l-cysteine/Ag NPs/hydrogel for conductive cotton fabrics with high stability against mechanical deformation. Cellulose 25:7355–7367

    CAS  Google Scholar 

  • Chen Y, Zhang Q, Ma YJ, Han QX (2018) Surface-oriented fluorinated pyridinium silicone with enhanced antibacterial activity on cotton via supercritical impregnation. Cellulose 25:1499–1511

    CAS  Google Scholar 

  • El-Rafie MH, Ahmed HB, Zahran MK (2014) Characterization of nanosilver coated cotton fabrics and evaluation of its antibacterial efficacy. Carbohydr Polym 107:174–181

    CAS  PubMed  Google Scholar 

  • Fouda MMG, Abdel-Halim ES, Al-Deyab SS (2013) Antibacterial modification of cotton using nanotechnology. Carbohydr Polym 92:943–954

    CAS  PubMed  Google Scholar 

  • Gao D, Li Y, Lyu B, Lyu L, Chen S, Ma J (2019) Construction of durable antibacterial and anti-mildew cotton fabric based on P (DMDAAC-AGE)/Ag/ZnO composites. Carbohydr Polym 204:161–169

    CAS  PubMed  Google Scholar 

  • Ghasemi N, Seyfi J, Asadollahzadeh MJ (2018) Imparting superhydrophobic and antibacterial properties onto the cotton fabrics: synergistic effect of zinc oxide nanoparticles and octadecanethiol. Cellulose 25:4211–4222

    CAS  Google Scholar 

  • Hebeish A, El-Naggar ME, Tawfik S, Zaghloul S, Sharaf S (2019) Hyperbranched polymer–silver nanohybrid induce super antibacterial activity and high performance to cotton fabric. Cellulose 26:3543–3555

    CAS  Google Scholar 

  • Karimi L, Yazdanshenas ME, Khajavi R, Rashidi A, Mirjalili M (2014) Using graphene/TiO2 nanocomposite as a new route for preparation of electroconductive, self-cleaning, antibacterial and antifungal cotton fabric without toxicity. Cellulose 21:3813–3827

    CAS  Google Scholar 

  • Kwak WG, Oh MH, Gong MS (2015) Preparation of silver-coated cotton fabrics using silver carbamate via thermal reduction and their properties. Carbohydr Polym 115:317–324

    CAS  PubMed  Google Scholar 

  • Li ZL, Chen J, Cao W, Wei DF, Zheng A, Guan Y (2018) Permanent antimicrobial cotton fabrics obtained by surface treatment with modified guanidine. Carbohydr Polym 180:192–199

    CAS  PubMed  Google Scholar 

  • Liang TY, Jiang ZL, Wang CS, Liu JL (2017) A facile one-step synthesis of flame-retardant coatings on cotton fabric via ultrasound irradiation. J Appl Polym Sci 134:45114–45119

    Google Scholar 

  • Lumbreras-Aguayo A, Melendez-Ortiz HI, Puente-Urbina B, Alvarado-Canche C, Ledezma A, Romero-Garcia J, Betancourt-Galindo R (2019) Poly(methacrylic acid)-modified medical cotton gauzes with antimicrobial and drug delivery properties for their use as wound dressings. Carbohydr Polym 205:203–210

    CAS  PubMed  Google Scholar 

  • Luo GY, Xi GH, Wang XY, Qin DD, Zhang YY, Fu FY, Liu XD (2017) Antibacterial N-halamine coating on cotton fabric fabricated using mist polymerization. J Appl Polym Sci 134:44897–44903

    Google Scholar 

  • Markovic D, Deeks C, Nunney T, Radovanovic Z, Radoicic M, Saponjic Z, Radetic M (2018) Antibacterial activity of Cu-based nanoparticles synthesized on the cotton fabrics modified with polycarboxylic acids. Carbohydr Polym 200:173–182

    CAS  PubMed  Google Scholar 

  • Mejia MI, Restrepo G, Marin JM, Sanjines R, Pulgarin C, Mielczarski E, Mielczarski J, Kiwi J (2010) Magnetron-sputtered Ag surfaces. New evidence for the nature of the Ag ions intervening in bacterial inactivation. ACS Appl Mater Inerfaces 2:230–235

    CAS  Google Scholar 

  • Mohamed AL, Hassabo AG, Shaarawy S, Hebeish A (2017) Benign development of cotton with antibacterial activity and metal sorpability through introduction amino triazole moieties and AgNPs in cotton structure pre-treated with periodate. Carbohydr Polym 178:251–259

    CAS  PubMed  Google Scholar 

  • Muzaffar S, Bhatti IA, Zuber M, Bhatti HN, Shahid M (2017) Study of the UV protective and antibacterial properties of aqueous polyurethane dispersions extended with low molecular weight chitosan. Int J Biol Macromol 94:51–60

    CAS  PubMed  Google Scholar 

  • Pasta M, La Mantia F, Hu L, Deshazer HD, Cui Y (2010) Aqueous supercapacitors on conductive cotton. Nano Res 3:452–458

    CAS  Google Scholar 

  • Prabhu KH, Teli MD, Waghmare NG (2011) Eco-friendly dyeing using natural mordant extracted from Emblica officinalis G. Fruit on cotton and silk fabrics with antibacterial activity. Fiber Polym 12:753–759

    CAS  Google Scholar 

  • Ranjbar-Mohammadi M (2018) Production of cotton fabrics with durable antibacterial property by using gum tragacanth and silver. Int J Biol Macromol 109:476–482

    CAS  PubMed  Google Scholar 

  • Rauytanapanit M, Opitakorn A, Terashima M, Waditee-Sirisattha R, Praneenararat T (2018) Antibacterial cotton fabrics based on hydrophilic amino-containing scaffolds. Colloids Surf B Biointerfaces 164:492–494

    Google Scholar 

  • Rehan M, El-Naggar ME, Mashaly HM, Wilkenc R (2018) Nanocomposites based on chitosan/silver/clay for durable multi-functional properties of cotton fabrics. Carbohydr Polym 182:29–41

    CAS  PubMed  Google Scholar 

  • Ru JD, Qian XR, Wang Y (2018) Study on antibacterial finishing of cotton fabric with silver nanoparticles stabilized by nanoliposomes. Cellulose 25:5443–5454

    CAS  Google Scholar 

  • Shaheen TI, Fouda A (2018) Green approach for one-pot synthesis of silver nanorod using cellulose nanocrystal and their cytotoxicity and antibacterial assessment. Int J Biol Macromol 106:784–792

    CAS  PubMed  Google Scholar 

  • Varesano A, Vineis C, Tonetti C, Mazzuchetti G, Bobba V (2015) Antibacterial property on Gram-positive bacteria of polypyrrole-coated fabrics. J Appl Polym Sci 132:41670–41675

    Google Scholar 

  • Velmurugan P, Hong S-C, Aravinthan A, Jang S-H, Yi P-I, Song Y-C, Jung E-S, Park J-S, Sivakumar S (2016) Comparison of the physical characteristics of green-synthesized and commercial silver nanoparticles: evaluation of antimicrobial and cytotoxic effects. Res Article Chem 42:201–208

    Google Scholar 

  • Wu YH, Luo XG, Li W, Song R, Li J, Li Y, Li B, Liu S (2016) Green and biodegradable composite films with novel antimicrobial performance based on cellulose. Food Chem 197:250–256

    CAS  PubMed  Google Scholar 

  • Xi GH, Fan WC, Wang L, Liu XD, Endo T (2015) Fabrication of asymmetrically superhydrophobic cotton fabrics via mist copolymerization of 2,2,2-trifluoroethyl methacrylate. J Polym Sci Pol Chem 53:1862–1871

    CAS  Google Scholar 

  • Xi GH, Wang J, Luo GY, Liu XD (2016) Healable superhydrophobicity of novel cotton fabrics modified via one-pot mist copolymerization. Cellulose 23:915–927

    CAS  Google Scholar 

  • Xia LX, Xu M, Cheng GZ, Yang LN, Guo YS, Li D, Fang DW, Zhang Q, Liu HY (2018) Facile construction of Ag nanoparticles encapsulated into carbon nanotubes with robust antibacterial activity. Carbon 130:775–781

    CAS  Google Scholar 

  • Xu QB, Wu YH, Zhang YY, Fu FY, Liu XD (2016) Durable antibacterial cotton modified by silver nanoparticles and chitosan derivative binder. Fiber Polym 17(11):1782–1789

    CAS  Google Scholar 

  • Xu QB, Xie LJ, Diao HY, Li FY, Zhang YY, Fu FY, Liu XD (2017a) Antibacterial cotton fabric with enhanced durability prepared using silver nanoparticles and carboxymethyl chitosan. Carbohydr Polym 177:187–193

    CAS  PubMed  Google Scholar 

  • Xu QB, Gu JY, Zhao Y, Ke XT, Liu XD (2017b) Antibacterial cotton fabric with enhanced durability prepared using l-cysteine and silver nanoparticles. Fiber Polym 18:2204–2211

    CAS  Google Scholar 

  • Xu QB, Ke XT, Cai DR, Zhang YY, Fu FY, Endo T, Liu XD (2018a) Silver-based, single-sided antibacterial cotton fabrics with improved durability via an l-cysteine binding effect. Cellulose 25:2129–2141

    CAS  Google Scholar 

  • Xu QB, Ke XT, Shen LW, Ge NQ, Zhang YY, Fu FY, Liu XD (2018b) Surface modification by carboxymethy chitosan via pad-dry-cure method for binding Ag NPs onto cotton fabric. Int J Biol Macromol 111:796–803

    CAS  PubMed  Google Scholar 

  • Xue CH, Chen J, Yin W, Jia ST, Ma JZ (2012) Superhydrophobic conductive textiles with antibacterial property by coating fibers with silver nanoparticles. Appl Surf Sci 258:2468–2472

    CAS  Google Scholar 

  • Yan HQ, Zhao L, Fang Z, Wang H (2017) Construction of multilayer coatings for flame retardancy of ramie fabric using layer-by-layer assembly. J Appl Polym Sci 134:45556

    Google Scholar 

  • Yang ZW, Zhang YY, Fu FY, Liu XD (2017) Single-faced flame resistance of cotton fabrics modified via mist copolymerization. RSC Adv 7:53871–53877

    CAS  Google Scholar 

  • Yetisen AK, Qu H, Manbachi A, Butt H, Dokmeci MR, Hinestroza JP, Skorobogatiy M, Khademhosseini A, Yun SH (2016) Nanotechnology in textiles. ACS Nano 10:3042–3068

    CAS  PubMed  Google Scholar 

  • Yu M, Wang ZQ, Lv M, Hao RZ, Zhao RT, Qi LH, Liu SM, Yu CH, Zhang B, Fan CH, Li JY (2016) Antisuperbug cotton fabric with excellent laundering durability. ACS Appl Mater Inerfaces 8:19866–19871

    CAS  Google Scholar 

  • Zhang W, Zhou JJ, Dai XL (2016a) Preparation and characterization of reactive chitosan quaternary ammonium salt and its application in antibacterial finishing of cotton fabric. Text Res J 0:1–7

    Google Scholar 

  • Zhang YY, Xu QB, Fu FY, Liu XD (2016b) Durable antimicrobial cotton textiles modified with inorganic nanoparticles. Cellulose 23:2791–2808

    CAS  Google Scholar 

  • Zhang M, Pang JY, Bao WH, Zhang WB, Gao H, Wang CY, Shi JY, Li J (2017) Antimicrobial cotton textiles with robust superhydrophobicity via plasma for oily water separation. Appl Surf Sci 419:16–23

    CAS  Google Scholar 

  • Zhang XH, Zhu MF, Wang W, Yu D (2018) Silver/waterborne polyurethane-acrylate’s antibacterial coating on cotton fabric based on click reaction via ultraviolet radiation. Prog Org Coat 120:10–18

    CAS  Google Scholar 

  • Zhao RT, Lv M, Li Y, Sun MX, Kong W, Wang LH, Song SP, Fan CH, Jia LL, Qiu SF, Sun YS, Song HB, Hao RZ (2017) Stable nanocomposite based on PEGylated and silver nanoparticles loaded graphene oxide for long-term antibacterial activity. ACS Appl Mater Inerfaces 9:15328–15341

    CAS  Google Scholar 

  • Zhou J, Cai DR, Xu QB, Zhang YY, Fu FY, Diao HY, Liu XD (2018) Excellent binding effect of l-methionine for immobilizing silver nanoparticles onto cotton fabrics to improve the antibacterial durability against washing. RSC Adv 8:24458–24463

    CAS  Google Scholar 

  • Zou HZ, Lin BF, Xu CH, Lin MJ, Zhan W (2018) Preparation and characterization of individual chitin nanofibers with high stability from chitin gels by low-intensity ultrasonication for antibacterial finishing. Cellulose 25:999–1010

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by National Natural Science Foundation of China (51873195 and 51573167).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiangDong Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1209 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Hu, X., Zhu, Y. et al. A hybrid binder of carboxymethyl chitosan and l-methionine enables a slight amount of Ag NPs to be durably effective on antibacterial cotton fabrics. Cellulose 26, 9323–9333 (2019). https://doi.org/10.1007/s10570-019-02715-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-019-02715-3

Keywords

Navigation