Skip to main content

Advertisement

Log in

Triazine mediated covalent antibiotic grafting on cotton fabrics as a modular approach for developing antimicrobial barriers

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

New antimicrobial textiles were prepared through direct chemical linkage of bioactive molecules eugenol and fluoroquinolone derivatives, onto the surface of cotton fabrics. The attachment through a triazine moiety minimizes the leaching of the antimicrobial molecule into the surroundings of the material. Bacterial efficacy against Staphylococcus aureus and Pseudomonas aeruginosa was studied. The treated textile with fluoroquinolone demonstrated bacteriostatic antimicrobial effects having a tendency to decrease the population of S. aureus in the planktonic form. A significant effect was also observed in the prevention of S. aureus biofilm formation and in its ability to kill bacteria within a preformed biofilm. Eugenol-modified fabric was also active in the process of eradicating preformed P. aeruginosa biofilms. Further, in vitro assays using human dermal fibroblast cells indicate no effects on cell proliferation and viability, and in vivo tests in a murine skin wound model showed no increase of IL-6 for full-thickness wounds that were in contact with the fabrics.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abramiuc D, Ciobanu L, Muresan R, Chiosac M, Muresan A (2013) Antibacterial finishing of cotton fabrics using biologically active natural compounds. Fibers Polym 14:1826–1833

    Article  CAS  Google Scholar 

  • Aldred JK, Kerns RJ, Osheroff N (2014) Mechanism of quinolone action and resistance. Biochemistry 53:1565–1574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benecia F, Courreges MC (2000) In vitro and in vivo activity of eugenol on human herpesvirus. Phytother Res 14:495–500

    Article  Google Scholar 

  • Blaszyk M, Holley RA (1998) Interaction of monolaurin, eugenol and sodium citrate on growth of common meat spoilage and pathogenic organisms. Int J Food Microbiol 39:175–183

    Article  CAS  PubMed  Google Scholar 

  • Dondoni A (2008) The emergence of thiol–ene coupling as a clickprocess for materials and bioorganic chemistry. Angew Chem Int Ed 47:8995–8997

    Article  CAS  Google Scholar 

  • Dong C, He P, Lu Z, Wang S, Sui S, Liu J, Zhang L, Zhu P (2018) Preparation and properties of cotton fabrics treated with a novel antimicrobial and flame retardant containing triazine and phosphorous components. J Therm Anal Calorim 131:1079–1087

    Article  CAS  Google Scholar 

  • Gargoubi S, Tolouei R, Chevallier P, Levesque L, Ladhari N, Boudokhabe C, Mantovani D (2016) Enhancing the functionality of cotton fabric by physical and chemical pre-treatments: a comparative study. Carbohyd Polym 147:28–36

    Article  CAS  Google Scholar 

  • Gupta P, Sarkar S, Das B, Bhattacharjee S, Tribedi P (2016) Biofilm, pathogenesis and prevention—a journey to break the wall: a review. Arch Microbiol 198(1):1–15

    Article  CAS  PubMed  Google Scholar 

  • Gutarowska B, Machnowski W, Kowzowicz L (2013) Antimicrobial activity of textiles with selected dyes and finishing agents used in the textile industry. Fibers Polym 14:415–422

    Article  CAS  Google Scholar 

  • Hong KH (2014) Preparation and properties of multifunctional cotton fabrics treated by phenolic acids. Cellulose 21:2111–2117

    Article  CAS  Google Scholar 

  • Hsu BB, Klibanov AM (2011) Light-activated covalent coating of cotton with bactericidal hydrophobic polycations. Biomacromol 12:6–9

    Article  CAS  Google Scholar 

  • Irie Y, Borlee BR, O’Connor JR, Hill PJ, Harwood CS, Wozniak DJ, Parsek MR (2012) Self-produced exopolysaccharide is a signal that stimulates biofilm formation in Pseudomonas aeruginosa. Proc Natl Acad Sci 109:20632–20636

    Article  PubMed  Google Scholar 

  • Jiang Z, Qiao M, Ren X, Zhu P, Huang T-Z (2017) Preparation of antibacterial cellulose with s-triazine-based quaternarized N-halamine. J Appl Polym Sci 134:44998

    Google Scholar 

  • Kalemba D, Kunicka A (2003) Antibacterial and antifungal properties of essential oils. Curr Med Chem 10:813–829

    Article  CAS  PubMed  Google Scholar 

  • Khatoona Z, McTiernana CD, Suuronena EJ, Mahb T-F, Alarcon EI (2018) Bacterial biofilm formation onimplantable devices andapproaches to its treatmentand prevention. Heliyon 4:e01067

    Article  Google Scholar 

  • Klivanov AM (2007) Permanently microbicidal materials coatings. J Mater Chem 17:2479–2482

    Article  CAS  Google Scholar 

  • Koga H, Ittoh A, Murayama S, Suzue S, Irikura T (1980) Structure-activity relationships of antibacterial 6,7- and 7,8-disubstituted 1-alkyl-1,4-dihydro-4-oxoquinoline-3-carboxylic acids. J Med Chem 23:1358–1363

    Article  CAS  PubMed  Google Scholar 

  • Koga H, Tokunaga E, Hidaka M, Umemura Y, Saito T, Isogai A, Kitaoka T (2010) Topochemical synthesis and catalysis of metal nanoparticles exposed on crystalline cellulose nanofibers. Chem Commun 46:8567–8569

    Article  CAS  Google Scholar 

  • Koh E, Hong KH (2014) Gallnut extract-treated wool and cotton for developing green functional textiles. Dyes Pigments 103:222–227

    Article  CAS  Google Scholar 

  • Lenardão EJ, Jacob RG, Mesquita KD, Lara RG, Webber R, Martínez DM, Savegnago L, Mendes SR, Alves D (2013) Perin G (2013) Glycerol as a promoting and recyclable medium for catalyst-free synthesis of linear thioethers: new antioxidants from eugenol. Green Chem Lett Rev 6:269–276

    Article  CAS  Google Scholar 

  • Leyva S, Leyva E (2008) Fluoroquinolonas. Mecanismos de acción y resistencia, estructura, síntesis y reacciones fisicoquímicas importantes para propiedades medicinales. Bol Soc Quim Méx 2:1–13

    Google Scholar 

  • Lin J, Murthy SJ, Olsen BD, Gleason KK, Klivanov AM (2003) Making thin polymeric materials, including fabrics, microbicidal and also water-repellent. Biotechnol Lett 25:1661–1665

    Article  CAS  PubMed  Google Scholar 

  • Liu K, Tian Y, Jiang L (2013) Bio-inspired superoleophobic and smart materials: design, fabrication, and application. Prog Mater Sci 58:503–564

    Article  CAS  Google Scholar 

  • Montagut AM, Gálvez E, Shafir A, Sebastián RM, Vallribera A (2017) Triarylmethane dyes for artificial repellent cotton fibers. Chem Eur J 23:3810–3814

    Article  CAS  PubMed  Google Scholar 

  • Öktem T (2003) Surface treatment of cotton fabrics with chitosan. Color Technol 119:241–246

    Article  Google Scholar 

  • Paharik AE, Horswill AR (2016) The staphylococcal biofilm: adhesins, regulation, and host response. Microbiol Spectr 4(2):1–27

    CAS  Google Scholar 

  • Pinho E, Henriques M, Oliveira R, Dias A, Soares G (2010) Development of biofunctional textiles by the application of resveratrol to cotton, bamboo, and silk. Fibers Polym 11:271–276

    Article  CAS  Google Scholar 

  • Ristić T, Zemljič LF, Novak M, Kunčič MK, Sonjak S, Cimerman NG, Strnad G (2011) Science against microbial pathogens: communicating current research and technological advances. Méndez-Vives, Formatex Research Center, Madrid

    Google Scholar 

  • Rojo L, Barcenilla JM, Vázquez B, Gonzalez R, Román JS (2008) From natural products to polymeric derivatives of “eugenol”: a new approach for preparation of dental composites and orthopedic bone cements. Biomacromol 9:2530–2535

    Article  CAS  Google Scholar 

  • Salabert J, Sebastián RM, Vallribera A (2015) Anthraquinone dyes for superhydrophobic cotton. Chem Commun 51:14251

    Article  CAS  Google Scholar 

  • Salama AAA, Koth RM, Shaker RN (2015) Effect of treatment durability and coloration of coated cotton fabrics on antibacterial, UV-blocking, healing and anti-inflammatory properties. J Chem Pharm Res 7:181–193

    CAS  Google Scholar 

  • Shahidi S, Wiener J (2012) Antimicrobial Agents in textile industry. In: Bobbarala V (ed) Antimicrobial Agents. InTech, Rijeka, pp 387–406

    Google Scholar 

  • Shahidi S, Aslan N, Ghoranneviss M, Korachi M (2014) Effect of thymol on the antibacterial efficiency of plasma-treated cotton fabric. Cellulose 21:1933–1943

    Article  CAS  Google Scholar 

  • Simoncic B, Tomsic B (2010) Structures of novel antimicrobial agents for textiles - A review. Text Res J 80:1721–1737

    Article  CAS  Google Scholar 

  • Soler R, Salabert J, Sebastián RM, Vallribera A, Roma N, Ricart S, Molins E (2011) Highly hydrophobic polyfluorinated azo dyes grafted on surfaces. Chem Commun 47:2889–2891

    Article  CAS  Google Scholar 

  • Song L, Baney RH (2016) Antibacterial evaluation of cotton textile treated by trialkoxysilane compounds with antimicrobial moiety. Text Res J 81:504–511

    Article  CAS  Google Scholar 

  • Sun G, Xu X, Bickett JR, Williams JF (2001) Durable and regenerable antibacterial finishing of fabrics with a new hydantoin derivative. Ind Eng Chem Res 40:1016–1021

    Article  CAS  Google Scholar 

  • Vazquez BI, Fente C, Franco CM, Vazquez MJ, Cepeda A (2001) Inhibitory effects of eugenol and thymol on Penicillium citrinum strains in culture media and cheese. Int J Food Microbiol 67:157–163

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Xue M, Li J, Zhang L, Cui Y (2010) Synthesis of a cellulose xanthate supported palladium(0) complex and its catalytic behavior in the Heck reaction. React Kinet Mech Catal 100:347–353

    CAS  Google Scholar 

  • Yang K, Clark M, Lewis DM (2018) Synthesis of a di(p-sulphophenoxy)-s- triazine reactive dye and its application in wool fabric ink-jet printing. Color Technol. https://doi.org/10.1111/cote.12388

    Article  Google Scholar 

Download references

Acknowledgments

Financial support for this work was provided by the Spanish Ministerio de Ciencia, Innovación y Universidades (Grants CTQ2014-53662-P, RTI2018-097853-B-I00 and 2016-81797-REDC) and by Generalitat de Catalunya (2017 SGR 00465). EIA and EJS thanks to the Canadian Institutes of Health Research (CIHR) for financial support. EIA also thanks the support of NSERC through the Discovery Grant program. AEK is appreciative to University of Ottawa for an Undergraduate Research Opportunity Award. CL is thankful for the Queen Elizabeth II Graduate Scholarship in Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Emilio I. Alarcon, Rosa María Sebastián or Adelina Vallribera.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 55356 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montagut, A.M., Granados, A., Lazurko, C. et al. Triazine mediated covalent antibiotic grafting on cotton fabrics as a modular approach for developing antimicrobial barriers. Cellulose 26, 7495–7505 (2019). https://doi.org/10.1007/s10570-019-02584-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-019-02584-w

Keywords

Navigation