Skip to main content
Log in

Polypyrrole@metal-organic framework (UIO-66)@cotton fabric electrodes for flexible supercapacitors

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Metal-organic frameworks (MOFs) are recently attracting more and more interests as supercapacitor electrode materials. However, their low conductivity largely thwarts their capacitance performance. Herein, fabric electrodes for flexible supercapacitors were successfully fabricated by depositing polypyrrole (PPy) nanotubes and Zr-based MOF (UiO-66) particles on cotton fabrics. The PPy nanotubes could serve as conductive connectors to bridge the UIO-66 particles due to their superior conductivity with one-dimensional structure. The conductivity of the PPy@UIO-66@cotton fabric electrode was increased to 14.29 S cm−1. A specific capacitance of 565 F g−1 at a current density of 0.8 mA cm−2 was obtained for the PPy@UIO-66@cotton fabric electrode. In addition, the proposed fabric electrode exhibited good cycling stability with capacitance retention of 90% after 500 charge–discharge cycles and excellent rate capability. This study confirmed the combination of MOFs and PPy nanotubes has great application prospect in fabric-based flexible supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abid HR, Ang HM, Wang S (2012) Effects of ammonium hydroxide on the structure and gas adsorption of nanosized Zr-MOFs (UiO-66). Nanoscale 4:3089–3094

    Article  CAS  PubMed  Google Scholar 

  • Alekseeva E, Bober P, Trchová M, Šeděnková I, Prokeš J, Stejskal J (2015) The composites of silver with globular or nanotubular polypyrrole: The control of silver content. Synth Met 209:105–111

    Article  CAS  Google Scholar 

  • Allison L, Hoxie S, Andrew TL (2017) Towards seamlessly-integrated textile electronics: methods to coat fabrics and fibers with conducting polymers for electronic applications. Chem Commun 53:7182–7193

    Article  CAS  Google Scholar 

  • Bo Y, Zhao Y, Cai Z, Bahi A, Liu C, Ko F (2018) Facile synthesis of flexible electrode based on cotton/polypyrrole/multi-walled carbon nanotube composite for supercapacitors. Cellulose 25:4079–4091

    Article  CAS  Google Scholar 

  • Deep A, Bhardwaj SK, Paul AK, Kim KH, Kumar P (2015) Surface assembly of nano-metal organic framework on amine functionalized indium tin oxide substrate for impedimetric sensing of parathion. Biosens Bioelectron 65:226–231

    Article  CAS  PubMed  Google Scholar 

  • Dhara B, Nagarkar SS, Kumar J, Kumar V, Jha PK, Ghosh SK, Nair S, Ballav N (2016) Increase in Electrical Conductivity of MOF to Billion-Fold upon Filling the Nanochannels with Conducting Polymer. J Phys Chem Lett 7:2945–2950

    Article  CAS  PubMed  Google Scholar 

  • Dubal DP, Chodankar NR, Kim D-H, Gomez-Romero P (2018) Towards flexible solid-state supercapacitors for smart and wearable electronics. Chem Soc Rev 47:2065–2129

    Article  CAS  PubMed  Google Scholar 

  • French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896

    Article  CAS  Google Scholar 

  • Fu D, Zhou H, Zhang X, Han G, Chang Y, Li H (2016) Flexible solid-state supercapacitor of metal-organic framework coated on carbon nanotube film interconnected by electrochemically-codeposited PEDOT-GO. Chemistryselect 1:285–289

    Article  CAS  Google Scholar 

  • Gholami M, Nia PM, Narimani L, Sokhakian M, Alias Y (2016) Flexible supercapacitor based on electrochemically synthesized pyrrole formyl pyrrole copolymer coated on carbon microfibers. Appl Surface Sci 378:259–269

    Article  CAS  Google Scholar 

  • Heinze J, Frontana-Uribe BA, Ludwigs S (2010) Electrochemistry of conducting polymers–persistent models and new concepts. Chem Rev 110:4724–4771

    Article  CAS  Google Scholar 

  • Huang G, Liu L, Rui W, Jing Z, Sun X, Peng H (2016a) Smart color-changing textile with high contrast based on single-sided conductive fabric. J Mater Chem C 4:7589–7594

    Article  CAS  Google Scholar 

  • Huang Q, Wang D, Zheng Z (2016b) Textile-Based Electrochemical Energy Storage Devices. Adv Energy Mater 6:1600783

    Article  CAS  Google Scholar 

  • Huang L, Rao W, Fan L, Xu J, Bai Z, Xu W, Bao H (2018) Paper Electrodes Coated with Partially-Exfoliated Graphite and Polypyrrole for High-Performance Flexible Supercapacitors. Polymers 10:135

    Article  CAS  PubMed Central  Google Scholar 

  • Katz MJ, Brown ZJ, Colon YJ, Siu PW, Scheidt KA, Snurr RQ, Hupp JT, Farha OK (2013) A facile synthesis of UiO-66, UiO-67 and their derivatives. Chem Commun 49:9449–9451

    Article  CAS  Google Scholar 

  • Kaur R, Kim KH, Paul AK, Deep A (2016) Recent Advances in the Photovoltaic Applications of Coordination Polymers and Metal Organic Frameworks. J Mater Chem A 4:3991–4002

    Article  CAS  Google Scholar 

  • Kopecká J, Kopecký D, Vrnata M, Fitl P, Stejskal J, Trchova M, Bober P, Moravkova Z, Prokes J, Sapurina I (2014) Polypyrrole nanotubes: mechanism of formation. RSC Adv 4:1551–1558

    Article  Google Scholar 

  • Kyung Min C, Hyung Mo J, Jung Hyo P, Yue-Biao Z, Jeung KuK, Yaghi OM (2014) Supercapacitors of nanocrystalline metal-organic frameworks. ACS Nano 8:7451–7457

    Article  CAS  Google Scholar 

  • Lai L, Zhao Y, Ying S, Li L, Ma Z, Pan L (2018) Hierarchically porous N-doped carbon derived from supramolecular assembled polypyrrole as a high performance supercapacitor electrode material. RSC Adv 8:18714–18722

    Article  CAS  Google Scholar 

  • Lee DY, Yoon SJ, Shrestha NK, Lee SH, Ahn H, Han SH (2012) Unusual energy storage and charge retention in Co-based metal-organic-frameworks. Microporous Mesoporous Mater 153:163–165

    Article  CAS  Google Scholar 

  • Li S, Huang D, Yang J, Zhang B, Zhang X, Yang G, Wang M, Shen Y (2014) Freestanding bacterial cellulose-polypyrrole nanofibres paper electrodes for advanced energy storage devices. Nano Energy 9:309–317

    Article  CAS  Google Scholar 

  • Li Y, Bober P, Trchová M, Stejskal J (2017) Polypyrrole prepared in the presence of methyl orange and ethyl orange: nanotubes versus globules in conductivity enhancement. J Mater Chem C 5:4236–4245

    Article  CAS  Google Scholar 

  • Li X, Cai J, Lu X, Shi Y, Gong D, Su D, Zhang D (2018) Stretchable conductors based on three-dimensional microcoils for tunable radio-frequency antennas. J Mater Chem C 6:4191–4200

    Article  CAS  Google Scholar 

  • Liu Y, Liu M (2017) Conductive carboxylated styrene butadiene rubber composites by incorporation of polypyrrole-wrapped halloysite nanotubes. Compos Sci Technol 143:56–66

    Article  CAS  Google Scholar 

  • Liu F, Yuan Y, Li L, Shang S, Yu X, Zhang Q, Jiang S, Wu Y (2015) Synthesis of polypyrrole nanocomposites decorated with silver nanoparticles with electrocatalysis and antibacterial property. Compos B Eng 69:232–236

    Article  CAS  Google Scholar 

  • Lu W, Wei Z, Gu ZY, Liu TF, Park J, Tian J, Zhang M, Zhang Q, Rd GT (2014) Tuning the structure and function of metal-organic frameworks via linker design. Chem Soc Rev 43:5561–5593

    Article  CAS  PubMed  Google Scholar 

  • Lund A, Velden NM, Persson N-K, Hamedi MM, Müller C (2018) Electrically conducting fibres for e-textiles: An open playground for conjugated polymers and carbon nanomaterials. Mat Sci Eng R 126:1–29

    Article  Google Scholar 

  • Meng G, Li L, Song Y (2017a) Inkjet printing wearable electronic devices. J Mater Chem C 5:2971–2993

    Article  Google Scholar 

  • Meng Q, Cai K, Chen Y, Chen L (2017b) Research progress on conducting polymer based supercapacitor electrode materials. Nano Energy 36:268–285

    Article  CAS  Google Scholar 

  • Nyström G, Razaq A, Strømme M, Nyholm L, Mihranyan A (2009) Ultrafast All-Polymer Paper-Based Batteries. Nano Lett 9:3635–3639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan L, Qiu H, Dou C, Li Y, Pu L, Xu J, Shi Y (2010) Conducting Polymer Nanostructures: Template Synthesis and Applications in Energy Storage. Int J Mol Sci 11:2636–2657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park S, Jayaraman S (2003) Smart textiles: Wearable electronic systems. MRS Bull 28:585–591

    Article  CAS  Google Scholar 

  • Peng S, Fan L, Wei C, Bao H, Zhang H, Xu W, Xu J (2016) Polypyrrole/nickel sulfide/bacterial cellulose nanofibrous composite membranes for flexible supercapacitor electrodes. Cellulose 23:2639–2651

    Article  CAS  Google Scholar 

  • Peng S, Fan L, Wei C, Liu X, Zhang H, Xu W, Jie X (2017) Flexible polypyrrole/copper sulfide/bacterial cellulose nanofibrous composite membranes as supercapacitor electrodes. Carbohydr Polym 157:344–352

    Article  CAS  PubMed  Google Scholar 

  • Piscopo CG, Polyzoidis A, Schwarzer M, Loebbecke S (2015) Stability of UiO-66 under acidic treatment: Opportunities and limitations for post-synthetic modifications. Micropor Mesopor Mat 208:30–35

    Article  CAS  Google Scholar 

  • Qi K, Hou R, Zaman S, Qiu Y, Xia BY, Duan H (2018) Construction of Metal-Organic Framework/Conductive Polymer Hybrid for All-Solid-State Fabric Supercapacitor. ACS Appl Mater Interfaces 10:18021–18028

    Article  CAS  PubMed  Google Scholar 

  • Senthilkumar ST, Selvan RK, Melo JS (2013) Redox additive/active electrolytes: a novel approach to enhance the performance of supercapacitors. J Mater Chem A 1:12386–12394

    Article  CAS  Google Scholar 

  • Shao L, Wang Q, Ma Z, Ji Z, Wang X, Song D, Liu Y, Wang N (2018) A high-capacitance flexible solid-state supercapacitor based on polyaniline and Metal-Organic Framework (UiO-66) composites. J Power Sources 379:350–361

    Article  CAS  Google Scholar 

  • Sheberla D, Bachman JC, Elias JS, Sun CJ, Shao-Horn Y, Dinca M (2017) Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat Mater 16:220–224

    Article  CAS  PubMed  Google Scholar 

  • Shim BS, Chen W, Doty C, Xu C, Kotov NA (2008) Smart electronic yarns and wearable fabrics for human biomonitoring made by carbon nanotube coating with polyelectrolytes. Nano Lett 8:4151–4157

    Article  CAS  PubMed  Google Scholar 

  • Stejskal J, Trchová M (2018) Conducting polypyrrole nanotubes: a review. Chem Papers 72:1563–1595

    Article  CAS  Google Scholar 

  • Stock N, Biswas S (2012) Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites. Chem Rev 112:933–969

    Article  CAS  PubMed  Google Scholar 

  • Sundriyal S, Kaur H, Bhardwaj SK, Mishra S, Kim KH, Deep A (2018) Metal-organic frameworks and their composites as efficient electrodes for supercapacitor applications. Coordin Chem Rev 369:15–38

    Article  CAS  Google Scholar 

  • Tan Y, Zhang W, Gao Y, Wu J, Tang B (2015) Facile synthesis and supercapacitive properties of Zr-metal organic frameworks (UiO-66). RSC Adv 5:17601–17605

    Article  CAS  Google Scholar 

  • Tao X (2006) Wearable electronics and photonics. Taylor & Francis Group, New York.

    Google Scholar 

  • Upadhyay J, Kumar A, Gogoi B, Buragohain AK (2015) Antibacterial and hemolysis activity of polypyrrole nanotubes decorated with silver nanoparticles by an in-situ reduction process. Mater Sci Eng C Mater Biol Appl 54:8–13

    Article  CAS  PubMed  Google Scholar 

  • Vellingiri K, Szulejko JE, Kumar P, Kwon EE, Kim KH, Deep A, Boukhvalov DW, Brown RJC (2016) Metal organic frameworks as sorption media for volatile and semi-volatile organic compounds at ambient conditions. Sci Rep 6:27813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang D, Li YX, Shi Z, Qin HL, Wang L, Pei XF, Jin J (2010) Spontaneous Growth of Free-Standing Polypyrrole Films at an Air/Ionic Liquid Interface. Langmuir 26:14405–14408

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Feng X, Ren L, Piao Q, Zhong J, Wang Y, Li H, Chen Y, Wang B (2015) Flexible Solid-State Supercapacitor Based on a Metal-Organic Framework Interwoven by Electrochemically-Deposited PANI. J Am Chem Soc 137:4920–4923

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Han Y, Feng X, Zhou J, Qi P, Wang B (2016) Metal-organic frameworks for energy storage: Batteries and supercapacitors. Coordin Chem Rev 307:361–381

    Article  CAS  Google Scholar 

  • Wei Z, Lin S, Qiao L, Song C, Fei W, Xiao-Ming T (2014) Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications. Adv Mater 26:5310–5336

    Article  CAS  Google Scholar 

  • Wei C, Xu Q, Chen Z, Rao W, Fan L, Ye Y, Bai Z, Xu J (2017) An all-solid-state yarn supercapacitor using cotton yarn electrodes coated with polypyrrole nanotubes. Carbohydr Polym 169:50–57

    Article  CAS  PubMed  Google Scholar 

  • Xia W, Zou R, An L, Xia D, Guo S (2015) Metal-organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energy Environ Sci 8:1837–1866

    Article  CAS  Google Scholar 

  • Xu J, Zhu L, Bai Z, Liang G, Liu L, Fang D, Xu W (2013) Conductive polypyrrole-bacterial cellulose nanocomposite membranes as flexible supercapacitor electrode. Org Electron 14:3331–3338

    Article  CAS  Google Scholar 

  • Xu J, Wang D, Fan L, Yuan Y, Wei W, Liu R, Gu S, Xu W (2015a) Fabric electrodes coated with polypyrrole nanorods for flexible supercapacitor application prepared via a reactive self-degraded template. Org Electron 26:292–299

    Article  CAS  Google Scholar 

  • Xu J, Wang D, Yuan Y, Wei W, Duan L, Wang L, Bao H, Xu W (2015b) Polypyrrole/reduced graphene oxide coated fabric electrodes for supercapacitor application. Org Electron 24:153–159

    Article  CAS  Google Scholar 

  • Xu J, Wang D, Yuan Y, Wei W, Gu S, Liu R, Wang X, Liu L, Xu W (2015c) Polypyrrole-coated cotton fabrics for flexible supercapacitor electrodes prepared using CuO nanoparticles as template. Cellulose 22:1355–1363

    Article  CAS  Google Scholar 

  • Xu Q, Fan L, Yuan Y, Wei C, Bai Z, Xu J (2016) All-solid-state yarn supercapacitors based on hierarchically structured bacterial cellulose nanofiber-coated cotton yarns. Cellulose 23:3987–3997

    Article  CAS  Google Scholar 

  • Xu X, Tang J, Qian H, Hou S, Bando Y, Msa H, Pan L, Yamauchi Y (2017) Three-Dimensional Networked Metal-Organic Frameworks with Conductive Polypyrrole Tubes for Flexible Supercapacitors. ACS Appl Mater Interfaces 9:38737–38744

    Article  CAS  PubMed  Google Scholar 

  • Xu Q, Wei C, Fan L, Rao W, Xu W, Liang H, Xu J (2018) Polypyrrole/titania-coated cotton fabrics for flexible supercapacitor electrodes. Appl Surface Sci 460:84–91

    Article  CAS  Google Scholar 

  • Yun TG, Bi H, Kim D, Hyun S, Han SM (2015) Polypyrrole-MnO2-Coated Textile-Based Flexible-Stretchable Supercapacitor with High Electrochemical and Mechanical Reliability. ACS Appl Mater Interfaces 7:9228–9234

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Zhou G, Rao W, Fan L, Xu W, Jie X (2018) A simple method of fabricating nickel-coated cotton fabrics for wearable strain sensor. Cellulose 25:4859–4870

    Article  CAS  Google Scholar 

  • Zhao Y, Liu B, Pan L, Yu G (2013) 3D nanostructured conductive polymer hydrogels for high-performance electrochemical devices. Energy Environ Sci 6:2856–2870

    Article  CAS  Google Scholar 

  • Zhou HC, Long JR, Yaghi OM (2012) Introduction to Metal-Organic Frameworks. Chem Rev 112:673–674

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Scientific Innovation Team Project of the Education Department of Hubei Province (No. T201507), Wuhan Science and Technology Bureau (No. 2016010101010016), the Natural Science Foundation of China (Nos. 51703170 and 21673167) and the National Key Research and Development Program of China (No. 2016YFA0101102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Tian, J., Rao, W. et al. Polypyrrole@metal-organic framework (UIO-66)@cotton fabric electrodes for flexible supercapacitors. Cellulose 26, 3387–3399 (2019). https://doi.org/10.1007/s10570-019-02321-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-019-02321-3

Keywords

Navigation