Skip to main content
Log in

Efficient and catalyst-free synthesis of cellulose acetoacetates

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

An efficient path to prepare cellulose acetoacetates is reviewed in detail. The biopolymer dissolved in N,N-dimethylacetamide-LiCl is allowed to react with 2,2,6-trimethyl-4H-1,3-dioxin-4-one at elevated temperatures without any catalyst. The procedure, which is briefly described in the literature (Marson and El Seoud in J Appl Polym Sci 74:1355–1360, 1999), utilizes simple to handle, commercially available compounds and requires only a short reaction time to obtain pure products that are promising starting materials for the design of advanced cellulose-based materials. Cellulose acetoacetates with degree of substitution of up to 1.84 can be obtained. A side reaction forming comb-like polymer structures was realized applying high molar ratio of cellulose to reagent (above 2 mol per mol) that was not known up to now. The hydrophobic cellulose acetoacetates can be transferred easily into nanoparticles with particle sizes ranging from 120 to 300 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ballini R, Petrini M (2004) Recent synthetic developments in the nitro to carbonyl conversion (Nef reaction). Tetrahedron 60:1017–1047

    Article  CAS  Google Scholar 

  • Bunting JW, Kanter JP (1993) Acidity and tautomerism of β-keto esters and amides in aqueous solutions. J Am Chem Soc 115:11705–11715

    Article  CAS  Google Scholar 

  • Cabasso I (1989) Membranes in polymers. In: Kroschwitz JI (ed) Biomaterials and medical applications. Wiley, New York, p 278

    Google Scholar 

  • Charles RG, Bryant BE (1963) Acetylacetonato manganese III. In: Kleinberg J (ed) Inorganic syntheses, vol 7. Wiley, Hoboken, pp 183–184

    Google Scholar 

  • Clemens RJ, Hyatt JA (1985) Acetoacetylation with 2,2,6-trimethyl-4H-1,3-dioxin-4-one: a convenient alternative to diketene. J Org Chem 50:2431–2435

    Article  CAS  Google Scholar 

  • Edgar KJ, Blount WW (1993) Patent: wO9303063A1. CAN 119:98310

    Google Scholar 

  • Edgar KJ, Lawniczak JE (1995) Patent: US5420267A1CAN 123:231754

  • Edgar KJ, Arnold KM, Blount WW, Lawniczak JE, Lowman DW (1995) Synthesis and properties of cellulose acetoacetates. Macromolecules 28:4122–4128

    Article  CAS  Google Scholar 

  • Heinze T (2016) Cellulose: structure and properties. Adv Polym Sci 271:1–52

    CAS  Google Scholar 

  • Heinze T, Liebert T, Koschella A (2006) Esterification of polysaccharides. Springer, Berlin

    Google Scholar 

  • Hesse M, Meier H, Zeeth B (2012) Spektroskopische methoden in der organischen chemie. Georg Thieme, Stuttgart

    Book  Google Scholar 

  • Hon DNS (1994) Cellulose: a random walk along its historical path. Cellulose 1:1–25

    Article  CAS  Google Scholar 

  • Hornig S, Heinze T (2008) Efficient approach to design, stable water-dispersible nanoparticles of hydrophobic cellulose esters. Biomacromol 9:1487–1492

    Article  CAS  Google Scholar 

  • Klemm D, Heublein B, Fink H-D, Bohn A (2005) Cellulose: fascination biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393

    Article  CAS  Google Scholar 

  • Knoevenagel E (1896) Ueber eine Darstellungsweise des Benzylidenacetessigesters. Chem Ber 29:172–174

    Article  CAS  Google Scholar 

  • Kuo CM, Edgar KJ (1997) Patent: WO9740074A1 CAN127:360151

  • Liu J-Y, Cao GE, Xu W, Cao J, Wang W-L (2010) Ni(OAc)2: a highly efficient catalyst for the synthesis of enaminone and enamino ester derivatives under solvent-free conditions. Appl Organometal Chem 24:685–691

    Article  CAS  Google Scholar 

  • Liu H, Sui X, Xu H, Zhang L, Zhong Y, Mao Z (2016) Self healing polysaccharide hydrogel based on dynamic covalent enamine bonds. Macromol Mater Eng 301:725–732

    Article  CAS  Google Scholar 

  • Marson GA, El Seoud OA (1999) A novel, efficient procedure for acylation of cellulose under homogeneous solution conditions. J Appl Polym Sci 74:1355–1360

    Article  CAS  Google Scholar 

  • Nef JU (1891) Zur Kenntniss des Acetessigäthers. Liebigs Ann Chem 266:52–138

    Article  Google Scholar 

  • Obermayer AS (1980) Controlled release from ultramicroporous triacetate. In: Kydonieus AF (ed) Controlled release technologies: methods, theory, and applications, vol 99. CRC Press, Boca Raton, pp 239–246

    Google Scholar 

  • Pawlowski WP, Gilbert RD, Fornes RE, Purrington ST (1986) Acetoacylation of O-(hydroxyproyl)cellulose by 2,2,6-trimethyl-4H-1,1-dioxin-4-one. Carbohydr Res 156:232–235

    Article  CAS  Google Scholar 

  • Pawlowski WP, Gilbert RD, Fornes RE, Purrington ST (1987) The thermotropic and lyotropic liquid-crystalline properties of acetoacetoxypropyl cellulose. J Polym Sci B Polym Phys 25:2293–2301

    Article  CAS  Google Scholar 

  • Bissery M-C, Thies C, Puisieux, F (1983) A study of process parameters in the making of microspheres by the solvent evaporation process. In: Proceedings of the tenth international symposium on controlled release of bioactive materials, San Francisco, p 262

  • Rudolph G, Henry MC, Muetterties EL (1967) Bis(2,4-pentandionato(Zinc). In: Muetterties EL (ed) Inorganic syntheses, vol 10. Wiley, Hoboken, pp 74–77

    Google Scholar 

  • Samantaray MK, Dash C, Shaikh MM, Pang K, Butcher RJ, Ghosh P (2011) Gold (III) N-heterocyclic carbene complexes mediated synthesis of β-enaminones from 1,3-dicarbonyl compounds and aliphatic amines. Inorg Chem 50:1840–1848

    Article  CAS  PubMed  Google Scholar 

  • Sridharan V, Ruiz M, Menéndez JC (2010) Mild and high-yielding synthesis of β-keto esters and β-ketoamides. Synthesis 42:1053–1057

    Google Scholar 

  • Staudinger H, Eicher T (1953) Über cellulosetriacetylacetate und celluloseacetate-acetylacetate. Makromol Chem 10:261–279

    Article  CAS  Google Scholar 

  • Wang PG, Xie W, Qiao L, Nickol RG, Cheng HN (2003) Patent: US6528644. CAN 138:188010

  • Witzeman JS, Nottingham WD (1991) Transacetoacylation with tert-butyl acetoacetate: synthetic applications. J Org Chem 56:1713–1718

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Steffi Stumpf from the group of Prof. U.S. Schubert (Center for Soft Matter, Jena Germany) for the SEM images. The SEM/TEM facilities of the Jena Center for Soft Matter (JCSM) were established with a Grant from the German Research Council (DFG) and the European Funds for Regional Development (EFRE). The studies were financially supported by the DFG-funded Collaborative Research Centre PolyTarget (SFB 1278, Project A02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Heinze.

Additional information

Member of European Polysaccharide Network of Excellence (EPNOE, http://www.epnoe.eu).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 140 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Würfel, H., Kayser, M. & Heinze, T. Efficient and catalyst-free synthesis of cellulose acetoacetates. Cellulose 25, 4919–4928 (2018). https://doi.org/10.1007/s10570-018-1908-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-018-1908-y

Keywords

Navigation