Skip to main content
Log in

PMMA/TEMPO-oxidized cellulose nanofiber nanocomposite with improved mechanical properties, high transparency and tunable birefringence

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Recently, cellulose nanofibers (CNFs) have been developed as a very popular renewable and biodegradable nanofiller material for polymer nanocomposites. However, achieving good dispersion in a polymer matrix for effective reinforcement is still a challenge because CNFs are hydrophilic, whereas most polymers are hydrophobic. In this study, we report the poly(methyl methacrylate)/2,2,6,6-tetramethylpiperidyl-1-oxyl oxidized CNFs (PMMA/TOCN) nanocomposites, which show good dispersion, improved mechanical properties, excellent transparency, as well as controllable birefringence using a simple surface-modification procedure of TOCN with amine-functionalized poly(ethylene glycol). Studies conducted using transmission electron microscopy and fourier transform infrared spectroscopy showed that TOCNs were homogenously dispersed in the PMMA matrix without aggregation due to the successful surface modification of TOCN. Moreover, the nanocomposites were highly transparent and the transmittance in the visible region was as high as approximately 90%. In addition, we firstly discovered that the birefringence of the nanocomposite could be controlled by the amount of TOCN added, even achieving zero birefringence. More importantly, the tensile strength and Young’s modulus of PMMA were significantly improved with the addition of TOCN. Such well-dispersed TOCN-based nanocomposites with high transparency, controllable birefringence and enhanced mechanical properties exhibit great potential for the applications in the optical devices and in the engineering field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Akkapeddi MK (2000) Glass fiber reinforced polyamide-6 nanocomposites. Polym Compos 21(4):576–585

    Article  CAS  Google Scholar 

  • Araki J, Wada M, Kuga S (2001) Steric stabilization of a cellulose microcrystal suspension by poly (ethylene glycol) grafting. Langmuir 17(1):21–27

    Article  CAS  Google Scholar 

  • Capadona JR, Shanmuganathan K, Trittschuh S et al (2009) Polymer nanocomposites with nanowhiskers isolated from microcrystalline cellulose. Biomacromolecules 10(4):712–716

    Article  CAS  Google Scholar 

  • Carotenuto G, Nicolais L, Kuang X et al (1996) A method for the preparation of PMMA-SiO2 nanocomposites with high homogeneity. Appl Compos Mater 2(6):385–393

    Article  Google Scholar 

  • Castillo L, López O, López C et al (2013) Thermoplastic starch films reinforced with talc nanoparticles. Carbohyd Polym 95(2):664–674

    Article  CAS  Google Scholar 

  • Clayton LNM, Sikder AK, Kumar A et al (2005) Transparent poly (methyl methacrylate)/single-walled carbon nanotube (PMMA/SWNT) composite films with increased dielectric constants. Adv Func Mater 15(1):101–106

    Article  CAS  Google Scholar 

  • Džunuzović E, Marinović-Cincović M, Vuković J et al (2009) Thermal properties of PMMA/TiO2 nanocomposites prepared by in situ bulk polymerization. Polym Compos 30(6):737–742

    Article  Google Scholar 

  • Eichhorn SJ, Dufresne A, Aranguren M et al (2010) Current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45(1):1

    Article  CAS  Google Scholar 

  • Frka-Petesic B, Sugiyama J, Kimura S et al (2015) Negative diamagnetic anisotropy and birefringence of cellulose nanocrystals. Macromolecules 48(24):8844–8857

    Article  CAS  Google Scholar 

  • Fujisawa S, Ikeuchi T, Takeuchi M et al (2012) Superior reinforcement effect of TEMPO-oxidized cellulose nanofibrils in polystyrene matrix: optical, thermal, and mechanical studies. Biomacromolecules 13(7):2188–2194

    Article  CAS  Google Scholar 

  • Fujisawa S, Saito T, Kimura S et al (2013) Surface engineering of ultrafine cellulose nanofibrils toward polymer nanocomposite materials. Biomacromolecules 14(5):1541–1546

    Article  CAS  Google Scholar 

  • Fukuzumi H, Saito T, Okita Y et al (2010) Thermal stabilization of TEMPO-oxidized cellulose. Polym Degrad Stab 95(9):1502–1508

    Article  CAS  Google Scholar 

  • Gao Z, Xie W, Hwu JM et al (2001) The characterization of organic modified montmorillonite and its filled PMMA nanocomposite. J Therm Anal Calorim 64(2):467–475

    Article  CAS  Google Scholar 

  • Gonçalves G, Barros-Timmons A et al (2010) Graphene oxide modified with PMMA via ATRP as a reinforcement filler. J Mater Chem 20(44):9927–9934

    Article  Google Scholar 

  • Habibi Y (2014) Key advances in the chemical modification of nanocelluloses. Chem Soc Rev 43(5):1519–1542

    Article  CAS  Google Scholar 

  • Huang W, Xu G (2010) Characterization of nano-Ag/PVP composites synthesized via ultra-violet irradiation. J Coal Sci Eng (China) 16(2):188–192

    Article  Google Scholar 

  • Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3(1):71–85

    Article  CAS  Google Scholar 

  • Jia Z, Wang Z, Xu C et al (1999) Study on poly (methyl methacrylate)/carbon nanotube composites. Mater Sci Eng A 271(1–2):395–400

    Article  Google Scholar 

  • Khaled SM, Sui R, Charpentier PA et al (2007) Synthesis of TiO2–PMMA nanocomposite: using methacrylic acid as a coupling agent. Langmuir 23(7):3988–3995

    Article  CAS  Google Scholar 

  • Kim S, Wilkie CA (2008) Transparent and flame retardant PMMA nanocomposites. Polym Adv Technol 19(6):496–506

    Article  CAS  Google Scholar 

  • Kim DO, Lee MH, Lee JH et al (2008) Transparent flexible conductor of poly (methyl methacrylate) containing highly-dispersed multiwalled carbon nanotube. Org Electron 9(1):1–13

    Article  Google Scholar 

  • Kuila T, Bose S, Khanra P et al (2011) Characterization and properties of in situ emulsion polymerized poly (methyl methacrylate)/graphene nanocomposites. Compos A Appl Sci Manuf 42(11):1856–1861

    Article  Google Scholar 

  • Lavoine N, Desloges I, Dufresne A et al (2012) Microfibrillated cellulose–Its barrier properties and applications in cellulosic materials: a review. Carbohyd Polym 90(2):735–764

    Article  CAS  Google Scholar 

  • Nakagaito AN, Fujimura A, Sakai T et al (2009) Production of microfibrillated cellulose (MFC)-reinforced polylactic acid (PLA) nanocomposites from sheets obtained by a papermaking-like process. Compos Sci Technol 69(7–8):1293–1297

    Article  CAS  Google Scholar 

  • Ohkita H, Tagaya A, Koike Y (2004a) Preparation of a zero-birefringence polymer doped with a birefringent crystal and analysis of its characteristics. Macromolecules 37(22):8342–8348

    Article  CAS  Google Scholar 

  • Ohkita H, Abe Y, Kojima H et al (2004b) Birefringence reduction method for optical polymers by the orientation-inhibition effect of silica particles. Appl Phys Lett 84(18):3534–3536

    Article  CAS  Google Scholar 

  • Oksman K, Mathew AP, Bondeson D et al (2006) Manufacturing process of cellulose whiskers/polylactic acid nanocomposites. Compos Sci Technol 66(15):2776–2784

    Article  CAS  Google Scholar 

  • Palkovits R, Althues H, Rumplecker A et al (2005) Polymerization of w/o microemulsions for the preparation of transparent SiO2/PMMA nanocomposites. Langmuir 21(13):6048–6053

    Article  CAS  Google Scholar 

  • Patnaik KSKR, Devi KS, Kumar VK (2010) Non-isothermal crystallization kinetics of polypropylene (PP) and polypropylene (PP)/talc nanocomposite. Int J Chem Eng Appl 1(4):346

    CAS  Google Scholar 

  • Philip B, Abraham JK, Chandrasekhar A et al (2003) Carbon nanotube/PMMA composite thin films for gas-sensing applications. Smart Mater Struct 12(6):935

    Article  CAS  Google Scholar 

  • Roy D, Semsarilar M, Guthrie JT et al (2009) Cellulose modification by polymer grafting: a review. Chem Soc Rev 38(7):2046–2064

    Article  CAS  Google Scholar 

  • Schroers M, Kokil A, Weder C (2004) Solid polymer electrolytes based on nanocomposites of ethylene oxide–epichlorohydrin copolymers and cellulose whiskers. J Appl Polym Sci 93(6):2883–2888

    Article  CAS  Google Scholar 

  • Seydibeyoğlu MÖ, Oksman K (2008) Novel nanocomposites based on polyurethane and micro fibrillated cellulose. Compos Sci Technol 68(3–4):908–914

    Article  Google Scholar 

  • Shen DK, Gu S (2009) The mechanism for thermal decomposition of cellulose and its main products. Biores Technol 100(24):6496–6504

    Article  CAS  Google Scholar 

  • Singh N, Khanna PK (2007) In situ synthesis of silver nano-particles in polymethylmethacrylate. Mater Chem Phys 104(2–3):367–372

    Article  CAS  Google Scholar 

  • Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459–494

    Article  Google Scholar 

  • Tagaya A, Koike Y (2012) Compensation and control of the birefringence of polymers for photonics. Polym J 44(4):306–314

    Article  CAS  Google Scholar 

  • Tagaya A, Ohkita H, Mukoh M et al (2003) Compensation of the birefringence of a polymer by a birefringent crystal. Science 301(5634):812–814

    Article  CAS  Google Scholar 

  • Takaichi S, Saito T, Tanaka R et al (2014) Improvement of nanodispersibility of oven-dried TEMPO-oxidized celluloses in water. Cellulose 21(6):4093–4103

    Article  CAS  Google Scholar 

  • Valandro SR, Lombardo PC, Poli AL et al (2014) Thermal properties of poly (methyl methacrylate)/organomodified montmorillonite nanocomposites obtained by in situ photopolymerization. Mater Res 17(1):265–270

    Article  CAS  Google Scholar 

  • Yoo Y, Spencer MW, Paul DR (2011) Morphology and mechanical properties of glass fiber reinforced Nylon 6 nanocomposites. Polymer 52(1):180–190

    Article  CAS  Google Scholar 

  • Zhu J, Start P, Mauritz KA et al (2002) Thermal stability and flame retardancy of poly (methyl methacrylate)-clay nanocomposites. Polym Degrad Stab 77(2):253–258

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Isogai lab at The University of Tokyo for providing the TOCN samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiaki Ougizawa.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 103 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, T., Kuboyama, K., Fukuzumi, H. et al. PMMA/TEMPO-oxidized cellulose nanofiber nanocomposite with improved mechanical properties, high transparency and tunable birefringence. Cellulose 25, 2393–2403 (2018). https://doi.org/10.1007/s10570-018-1725-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-018-1725-3

Keywords

Navigation