Skip to main content
Log in

Fabrication of homogeneous and enhanced soybean protein isolate-based composite films via incorporating TEMPO oxidized nanofibrillated cellulose stablized nano-ZnO hybrid

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Soybean protein isolate (SPI) is well-suited to the preparation of composite films due to its abundance, renewability, biodegradability, and favorable film-forming capacity. In this study, different SPI-based composite films were prepared by incorporating nano-ZnO and 2,2,6,6-Tetramethylpiperidine 1-oxyl (TEMPO) oxidized nanofibrillated cellulose (TNFC) separately or together. Nano-ZnO was introduced to endow the films with multifunction capability, while TNFC was introduced to stabilize the nanoparticles. Both the macro optical characterization and micro scanning electron microscope with energy dispersive X-ray (SEM–EDX) analysis indicated that TNFC could significantly decrease nano-ZnO aggregation and improve its dispersibility in the SPI matrix due to the mechanical restriction and physical adsorption effect of TNFC to the nano-ZnO. In addition to the improved dispersibility, incorporating nano-ZnO and TNFC benefitted the mechanical properties and thermo stability of the SPI-based composite films. The tensile strength and Young’s modulus increased by 73 and 57%, respectively, and the maximum degradation temperature increased by 10 °C, compared to that of the unmodified SPI film. These results can be attributed to the hydrogen bonds formed among SPI components, TNFC, and nano-ZnO, which were further examined by attenuated total reflectance-fourier transform infrared spectroscopy and X-ray diffraction analysis. After the incorporation of nano-ZnO, the SPI-based composite films also possessed excellent UV-shielding capacity and superior antimicrobial ability. To this effect, this work provides a valuable reference for nanoparticles dispersion and application in regards to polymer enhancement and multi-functionalization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ai F, Zheng H, Wei M, Huang J (2007) Soy protein plastics reinforced and toughened by SiO2 nanoparticles. J Appl Polym Sci 105:1597–1604

    Article  CAS  Google Scholar 

  • Almutawah A, Barker SA, Belton PS (2007) Hydration of gluten: a dielectric, calorimetric, and Fourier transform infrared study. Biomacromol 8:1601–1606

    Article  CAS  Google Scholar 

  • Althues H, Henle J, Kaskel S (2007) Functional inorganic nanofillers for transparent polymers. Chem Soc Rev 36:1454–1465

    Article  CAS  Google Scholar 

  • Aulin C, Salazar-Alvarez G, Lindström T (2012) High strength, flexible and transparent nanofibrillated cellulose–nanoclay biohybrid films with tunable oxygen and water vapor permeability. Nanoscale 4:6622

    Article  CAS  Google Scholar 

  • Bagheri M, Rabieh S (2013) Preparation and characterization of cellulose-ZnO nanocomposite based on ionic liquid ([C4mim]Cl). Cellulose 20:699–705

    Article  CAS  Google Scholar 

  • Bajpai SK, Chand N, Chaurasia V (2011) Nano zinc oxide-loaded calcium alginate films with potential antibacterial properties. Food Bioprocess Technol 5:1871–1881

    Article  Google Scholar 

  • Cai J, Kimura S, Wada M, Kuga S (2009) Nanoporous cellulose as metal nanoparticles support. Biomacromol 10:87–94

    Article  CAS  Google Scholar 

  • Chen L, Remondetto G, Rouabhia M, Subirade M (2008) Kinetics of the breakdown of cross-linked soy protein films for drug delivery. Biomaterials 29:3750–3756

    Article  CAS  Google Scholar 

  • Chen J, Chen X, Zhu Q, Chen F, Zhao X, Ao Q (2013) Determination of the domain structure of the 7S and 11S globulins from soy proteins by XRD and FTIR. J Sci Food Agric 93:1687–1691

    Article  CAS  Google Scholar 

  • Chung SJ, Leonard JP, Nettleship I, Lee J-K, Soong Y, Martello DV, Chyu MK (2009) Characterization of ZnO nanoparticle suspension in water: effectiveness of ultrasonic dispersion. Powder Technol 194:75–80

    Article  CAS  Google Scholar 

  • Ciannamea EM, Stefani PM, Ruseckaite RA (2014) Physical and mechanical properties of compression molded and solution casting soybean protein concentrate based films. Food Hydrocoll 38:193–204

    Article  CAS  Google Scholar 

  • Corbierre MK, Cameron NS, Sutton M, Mochrie SGJ, Lurio LB, Rühm A, Lennox RB (2001) Polymer-stabilized gold nanoparticles and their incorporation into polymer matrices. J Am Chem Soc 123:10411–10412

    Article  CAS  Google Scholar 

  • Dash S, Swain SK (2013) Effect of nanoboron nitride on the physical and chemical properties of soy protein. Compos Sci Technol 84:39–43

    Article  CAS  Google Scholar 

  • Echeverría I, Eisenberg P, Mauri AN (2014) Nanocomposites films based on soy proteins and montmorillonite processed by casting. J Membr Sci 449:15–26

    Article  Google Scholar 

  • Fu F, Li L, Liu L, Cai J, Zhang Y, Zhou J, Zhang L (2015) Construction of cellulose based ZnO nanocomposite films with antibacterial properties through one-step coagulation. ACS Appl Mater Interfaces 7:2597–2606

    Article  CAS  Google Scholar 

  • Garrido T, Etxabide A, Peñalba M, de la Caba K, Guerrero P (2013) Preparation and characterization of soy protein thin films: processing–properties correlation. Mater Lett 105:110–112

    Article  CAS  Google Scholar 

  • González A, Alvarez Igarzabal CI (2015) Nanocrystal-reinforced soy protein films and their application as active packaging. Food Hydrocoll 43:777–784

    Article  Google Scholar 

  • González A, Strumia MC, Alvarez Igarzabal CI (2011) Cross-linked soy protein as material for biodegradable films: synthesis, characterization and biodegradation. J Food Eng 106:331–338

    Article  Google Scholar 

  • Grüneberger F, Künniger T, Huch A, Zimmermann T, Arnold M (2015) Nanofibrillated cellulose in wood coatings: dispersion and stabilization of ZnO as UV absorber. Prog Org Coat 87:112–121

    Article  Google Scholar 

  • Ifuku S, Tsuji M, Morimoto M, Saimoto H, Yano H (2009) Synthesis of silver nanoparticles templated by TEMPO-mediated oxidized bacterial cellulose nanofibers. Biomacromol 10:2714–2717

    Article  CAS  Google Scholar 

  • Jiang H, K-s Moon, Li Y, Wong CP (2006) Surface functionalized silver nanoparticles for ultrahigh conductive polymer composites. Chem Mater 18:2969–2973

    Article  CAS  Google Scholar 

  • Johnsen BB, Kinloch AJ, Mohammed RD, Taylor AC, Sprenger S (2007) Toughening mechanisms of nanoparticle-modified epoxy polymers. Polymer 48:530–541

    Article  CAS  Google Scholar 

  • Jung C (2000) Insight into protein structure and protein–ligand recognition by Fourier transform infrared spectroscopy. J Mol Recognit 13:325–351

    Article  CAS  Google Scholar 

  • Kang HJ, Song XS, Wang Z, Zhang W, Zhang SF, Li JZ (2016) High-performance and fully renewable soy protein isolate-based film from microcrystalline cellulose via bio-inspired poly(dopamine) surface modification. ACS Sust Chem Eng 4:4354–4360

    Article  CAS  Google Scholar 

  • Kanmani P, Rhim JW (2014) Properties and characterization of bionanocomposite films prepared with various biopolymers and ZnO nanoparticles. Carbohydr Polym 106:190–199

    Article  CAS  Google Scholar 

  • Krochta JM, Mulder-Johnston D (1997) Edible and biodegradable polymer films: challenges and opportunities. Food technology (USA)

  • Kumar P, Sandeep KP, Alavi S, Truong VD, Gorga RE (2010) Preparation and characterization of bio-nanocomposite films based on soy protein isolate and montmorillonite using melt extrusion. J Food Eng 100:480–489

    Article  CAS  Google Scholar 

  • Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110

    Article  CAS  Google Scholar 

  • Li Y et al (2013) Strong transparent magnetic nanopaper prepared by immobilization of Fe3O4 nanoparticles in a nanofibrillated cellulose network. J Mater Chem A 1:15278

    Article  CAS  Google Scholar 

  • Li K, Chen H, Li Y, Li J, He J (2015) Endogenous Cu and Zn nanocluster-regulated soy protein isolate films: excellent hydrophobicity and flexibility. RSC Adv 5:66543–66548

    Article  CAS  Google Scholar 

  • Li Y, Chen H, Dong Y, Li K, Li L, Li J (2016) Carbon nanoparticles/soy protein isolate bio-films with excellent mechanical and water barrier properties. Ind Crops Prod 82:133–140

    Article  CAS  Google Scholar 

  • Liu Y, Li K (2007) Development and characterization of adhesives from soy protein for bonding wood. Int J Adhes Adhes 27:59–67

    Article  Google Scholar 

  • Lodha P, Netravali AN (2005) Thermal and mechanical properties of environment-friendly ‘green’ plastics from stearic acid modified-soy protein isolate. Ind Crops Prod 21:49–64

    Article  CAS  Google Scholar 

  • Lu Y, Weng L, Zhang L (2004) Morphology and properties of soy protein isolate thermoplastics reinforced with chitin whiskers. Biomacromol 5:1046–1051

    Article  CAS  Google Scholar 

  • Martins NCT et al (2013) Antibacterial paper based on composite coatings of nanofibrillated cellulose and ZnO. Colloids Surf Physicochem Eng Aspects 417:111–119

    Article  CAS  Google Scholar 

  • Nafchi AM, Alias AK, Mahmud S, Robal M (2012) Antimicrobial, rheological, and physicochemical properties of sago starch films filled with nanorod-rich zinc oxide. J Food Eng 113:511–519

    Article  CAS  Google Scholar 

  • Odegard GM, Clancy TC, Gates TS (2005) Modeling of the mechanical properties of nanoparticle/polymer composites. Polymer 46:553–562

    Article  CAS  Google Scholar 

  • Park S, Bae D, Rhee K (2000) Soy protein biopolymers cross-linked with glutaraldehyde. J Am Oil Chem Soc 77:879–884

    Article  CAS  Google Scholar 

  • Ramanathan T et al (2008) Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol 3:327–331

    Article  CAS  Google Scholar 

  • Rhim JW, Gennadios A, Handa A, Weller CL, Hanna MA (2000) Solubility, tensile, and color properties of modified soy protein isolate films. J Agric Food Chem 48:4937–4941

    Article  CAS  Google Scholar 

  • Rhim JW, Gennadios A, Weller CL, Hanna MA (2002) Sodium dodecyl sulfate treatment improves properties of cast films from soy protein isolate. Ind Crops Prod 15:199–205

    Article  CAS  Google Scholar 

  • Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromol 8:2485–2491

    Article  CAS  Google Scholar 

  • Salarbashi D, Mortazavi SA, Noghabi MS, Fazly Bazzaz BS, Sedaghat N, Ramezani M, Shahabi-Ghahfarrokhi I (2016) Development of new active packaging film made from a soluble soybean polysaccharide incorporating ZnO nanoparticles. Carbohydr Polym 140:220–227

    Article  CAS  Google Scholar 

  • Samaele N, Amornpitoksuk P, Suwanboon S (2010) Effect of pH on the morphology and optical properties of modified ZnO particles by SDS via a precipitation method. Powder Technol 203:243–247

    Article  CAS  Google Scholar 

  • Shankar S, Teng X, Li G, Rhim J-W (2015) Preparation, characterization, and antimicrobial activity of gelatin/ZnO nanocomposite films. Food Hydrocoll 45:264–271

    Article  CAS  Google Scholar 

  • Shin Y, Bae I-T, Arey BW, Exarhos GJ (2008) Facile stabilization of gold-silver alloy nanoparticles on cellulose nanocrystal. J Phys Chem C 112:4844–4848

    Article  CAS  Google Scholar 

  • Song F, Tang DL, Wang XL, Wang YZ (2011) Biodegradable soy protein isolate-based materials: a review. Biomacromol 12:3369–3380

    Article  CAS  Google Scholar 

  • Sun L, Chen W, Liu Y, Li J, Yu H (2015) Soy protein isolate/cellulose nanofiber complex gels as fat substitutes: rheological and textural properties and extent of cream imitation. Cellulose 22:2619–2627

    Article  CAS  Google Scholar 

  • Tian H, Wang Y, Zhang L, Quan C, Zhang X (2010) Improved flexibility and water resistance of soy protein thermoplastics containing waterborne polyurethane. Ind Crops Prod 32:13–20

    Article  CAS  Google Scholar 

  • Ullah A, Wu J (2013) Feather fiber-based thermoplastics: effects of different plasticizers on material properties. Macromol Mater Eng 298:153–162

    Article  CAS  Google Scholar 

  • Vaz CM, van Doeveren PFNM, Yilmaz G, de Graaf LA, Reis RL, Cunha AM (2005) Processing and characterization of biodegradable soy plastics: effects of crosslinking with glyoxal and thermal treatment. J Appl Polym Sci 97:604–610

    Article  CAS  Google Scholar 

  • Wang S-Y, Zhu B-B, Li D-Z, Fu X-Z, Shi L (2012) Preparation and characterization of TIO2/SPI composite film. Mater Lett 83:42–45

    Article  CAS  Google Scholar 

  • Wu Q, Zhang L (2001) Effects of the molecular weight on the properties of thermoplastics prepared from soy protein isolate. J Appl Polym Sci 82:3373–3380

    Article  CAS  Google Scholar 

  • Xiao S, Gao R, Gao L, Li J (2016) Poly(vinyl alcohol) films reinforced with nanofibrillated cellulose (NFC) isolated from corn husk by high intensity ultrasonication. Carbohydr Polym 136:1027–1034

    Article  CAS  Google Scholar 

  • Xiong R, Lu C, Wang Y, Zhou Z, Zhang X (2013) Nanofibrillated cellulose as the support and reductant for the facile synthesis of Fe3O4/Ag nanocomposites with catalytic and antibacterial activity. J Mater Chem A 1:14910

    Article  CAS  Google Scholar 

  • Xu F, Dong Y, Zhang W, Zhang S, Li L, Li J (2015) Preparation of cross-linked soy protein isolate-based environmentally-friendly films enhanced by PTGE and PAM. Ind Crops Prod 67:373–380

    Article  CAS  Google Scholar 

  • Yang C, Wu J, Hou Y (2011) Fe3O4 nanostructures: synthesis, growth mechanism, properties and applications. Chem Commun (Camb) 47:5130–5141

    Article  CAS  Google Scholar 

  • Yu J, Yang J, Liu B, Ma X (2009) Preparation and characterization of glycerol plasticized-pea starch/ZnO–carboxymethylcellulose sodium nanocomposites. Bioresour Technol 100:2832–2841

    Article  CAS  Google Scholar 

  • Zhang J, Gao G, Zhang M, Zhang D, Wang C, Zhao D, Liu F (2006) ZnO/PS core–shell hybrid microspheres prepared with miniemulsion polymerization. J Colloid Interface Sci 301:78–84

    Article  CAS  Google Scholar 

  • Zhang S, Xia C, Dong Y, Yan Y, Li J, Shi SQ, Cai L (2016) Soy protein isolate-based films reinforced by surface modified cellulose nanocrystal. Ind Crops Prod 80:207–213

    Article  Google Scholar 

  • Zheng H, Ai F, Wei M, Huang J, Chang PR (2007) Thermoplastic soy protein nanocomposites reinforced by carbon nanotubes. Macromol Mater Eng 292:780–788

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by “The Fundamental Research Funds for the Central Universities” (No. 2016ZCQ01) and “the National Natural Science Foundation of China” (Project 51779005/E090301).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shifeng Zhang.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Y., Wang, K., Wang, Z. et al. Fabrication of homogeneous and enhanced soybean protein isolate-based composite films via incorporating TEMPO oxidized nanofibrillated cellulose stablized nano-ZnO hybrid. Cellulose 24, 4807–4819 (2017). https://doi.org/10.1007/s10570-017-1469-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-017-1469-5

Keywords

Navigation