Skip to main content
Log in

Enzymatically hydrolyzed and TEMPO-oxidized cellulose nanofibers for the production of nanopapers: morphological, optical, thermal and mechanical properties

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

In the present study, CNF prepared by TEMPO-mediated oxidation and enzymatic hydrolysis were used for the production of nanopapers using a papermaking-like route. Nanopapers were characterized in terms of tensile, thermal, optical and morphological properties. Those prepared from enzymatically hydrolyzed CNF were found to be weaker at tensile than those resulting from TEMPO-mediated oxidation, but with similar level of stiffness. Enzymatically obtained CNF presented lower transparency due to their higher diameter and lower fibrillation yield. Moreover, TEMPO-oxidized CNF presented lower onset of the thermal degradation temperature (230 °C) due to the presence of carboxylic groups. Overall, the influence of increasing the amount of enzyme during enzymatic hydrolysis and the amount of sodium hypochlorite during TEMPO-mediated oxidation was assessed as function of the ultimate properties of nanopapers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Althues H, Henle J, Kaskel S (2007) Functional inorganic nanofillers for transparent polymers. Chem Soc Rev 36(9):1454–1465

    Article  CAS  Google Scholar 

  • Besbes I, Alila S, Boufi S (2011) Nanofibrillated cellulose from TEMPO-oxidized eucalyptus fibres: effect of the carboxyl content. Carbohyd Polym 84(3):975–983

    Article  CAS  Google Scholar 

  • Chun S-J, Lee S-Y, Doh G-H, Lee S, Kim JH (2011) Preparation of ultrastrength nanopapers using cellulose nanofibrils. J Ind Eng Chem 17(3):521–526

    Article  CAS  Google Scholar 

  • Dankovich TA, Gray DG (2011) Contact angle measurements on smooth nanocrystalline cellulose (I) thin films. J Adhes Sci Technol 25(6–7):699–708

    Article  CAS  Google Scholar 

  • de Marco JL, Felix CR (2007) Purification and characterization of a beta-glucanase produced by Trichoderma harzianum showing biocontrol potential. Braz Arch Biol Technol 50(1):21–29

    Article  Google Scholar 

  • Delgado-Aguilar M, González I, Tarrés Q, Alcalá M, Pèlach MÀ, Mutjé P (2015a) Approaching a low-cost production of cellulose nanofibers for papermaking applications. BioResources 10(3):5345–5355

    CAS  Google Scholar 

  • Delgado-Aguilar M, Tarrés Q, Puig J, Boufi S, Blanco Á, Mutjé P (2015b) Enzymatic refining and cellulose nanofiber addition in papermaking processes from recycled and deinked slurries. BioResources 10(3):5730–5743

    CAS  Google Scholar 

  • Eriksen O, Syverud K, Gregersen O (2008) The use of microfibrillated cellulose produced from kraft pulp as strength enhancer in TMP paper. Nord Pulp Pap Res J 23(3):299–304

    Article  CAS  Google Scholar 

  • Espinosa E, Tarrés Q, Delgado-Aguilar M, González I, Mutjé P, Rodríguez A (2016) Suitability of wheat straw semichemical pulp for the fabrication of lignocellulosic nanofibres and their application to papermaking slurries. Cellulose 23(1):837–852

    Article  CAS  Google Scholar 

  • Ferrer A, Quintana E, Filpponen I, Solala I, Vidal T, Rodríguez A, Laine J, Rojas OJ (2012) Effect of residual lignin and heteropolysaccharides in nanofibrillar cellulose and nanopaper from wood fibers. Cellulose 19(6):2179–2193

    Article  CAS  Google Scholar 

  • Henriksson M, Henriksson G, Berglund L, Lindström T (2007) An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur Polym J 43(8):3434–3441

    Article  CAS  Google Scholar 

  • Henriksson M, Berglund LA, Isaksson P, Lindstrom T, Nishino T (2008) Cellulose nanopaper structures of high toughness. Biomacromol 9(6):1579–1585

    Article  CAS  Google Scholar 

  • Hu L, Zheng G, Yao J, Liu N, Weil B, Eskilsson M, Karabulut E, Ruan Z, Fan S, Bloking JT (2013) Transparent and conductive paper from nanocellulose fibers. Energy Environ Sci 6(2):513–518

    Article  CAS  Google Scholar 

  • Hubbe MA (2014) Prospects for maintaining strength of paper and paperboard products while using less forest resources: a review. BioResources 1(9):1787–1823

    Google Scholar 

  • Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3(1):71–85

    Article  CAS  Google Scholar 

  • Jorfi M, Foster EJ (2015) Recent advances in nanocellulose for biomedical applications. J Appl Polym Sci 132(14). doi:10.1002/app.41719

  • Lizundia E, Delgado-Aguilar M, Mutjé P, Fernández E, Robles-Hernandez B, de la Fuente MR, Vilas JL, León LM (2016) Cu-coated cellulose nanopaper for green and low-cost electronics. Cellulose 23(3):1997–2010

    Article  CAS  Google Scholar 

  • Naderi A (2017) Nanofibrillated cellulose: properties reinvestigated. Cellulose 24(5):1933–1945

    Article  CAS  Google Scholar 

  • Naderi A, Lindström T, Pettersson T (2014) The state of carboxymethylated nanofibrils after homogenization-aided dilution from concentrated suspensions: a rheological perspective. Cellulose 21(4):2357–2368

    Article  CAS  Google Scholar 

  • Olsson RT, Samir MA, Salazar-Alvarez G, Belova L, Ström V, Berglund LA, Ikkala O, Nogues J, Gedde UW (2010) Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates. Nat Nanotechnol 5(8):584–588

    Article  CAS  Google Scholar 

  • Österberg M, Vartiainen J, Lucenius J, Hippi U, Seppälä J, Serimaa R, Laine J (2013) A fast method to produce strong NFC films as a platform for barrier and functional materials. ACS Appl Mater Interfaces 5(11):4640–4647

    Article  Google Scholar 

  • Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8(8):2485–2491

    Article  CAS  Google Scholar 

  • Segal L, Creely J, Martin A, Conrad C (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29(10):786–794

    Article  CAS  Google Scholar 

  • Sehaqui H, Liu A, Zhou Q, Berglund LA (2010) Fast preparation procedure for large, flat cellulose and cellulose/inorganic nanopaper structures. Biomacromolecules 11(9):2195–2198

    Article  CAS  Google Scholar 

  • Sehaqui H, Zhou Q, Ikkala O, Berglund LA (2011) Strong and tough cellulose nanopaper with high specific surface area and porosity. Biomacromolecules 12(10):3638–3644

    Article  CAS  Google Scholar 

  • Shinoda R, Saito T, Okita Y, Isogai A (2012) Relationship between length and degree of polymerization of TEMPO-oxidized cellulose nanofibrils. Biomacromolecules 13(3):842–849

    Article  CAS  Google Scholar 

  • Spence K, Habibi Y, Dufresne A (2011) Nanocellulose-based composites. Cellulose fibers: bio-and nano-polymer composites. Springer, Berlin, pp 179–213

    Book  Google Scholar 

  • Sun X, Wu Q, Ren S, Lei T (2015) Comparison of highly transparent all-cellulose nanopaper prepared using sulfuric acid and TEMPO-mediated oxidation methods. Cellulose 22(2):1123–1133

    Article  CAS  Google Scholar 

  • Tarrés Q, Saguer E, Pèlach M, Alcalà M, Delgado-Aguilar M, Mutjé P (2016) The feasibility of incorporating cellulose micro/nanofibers in papermaking processes: the relevance of enzymatic hydrolysis. Cellulose 23(2):1433–1445

    Article  Google Scholar 

  • Wu C-N, Saito T, Fujisawa S, Fukuzumi H, Isogai A (2012) Ultrastrong and high gas-barrier nanocellulose/clay-layered composites. Biomacromolecules 13(6):1927–1932

    Article  CAS  Google Scholar 

  • Zhu H, Fang Z, Preston C, Li Y, Hu L (2014) Transparent paper: fabrications, properties, and device applications. Energy Environ Sci 7(1):269–287

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are thankful to the University of Girona for providing us with most of the basic resources for the development of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Delgado-Aguilar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarrés, Q., Boufi, S., Mutjé, P. et al. Enzymatically hydrolyzed and TEMPO-oxidized cellulose nanofibers for the production of nanopapers: morphological, optical, thermal and mechanical properties. Cellulose 24, 3943–3954 (2017). https://doi.org/10.1007/s10570-017-1394-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-017-1394-7

Keywords

Navigation