Skip to main content
Log in

Ensemble evaluation of polydisperse nanocellulose dimensions: rheology, electron microscopy, X-ray scattering and turbidimetry

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Six types of CNCs with different sizes were prepared from tunicins by sulfuric acid hydrolysis and subsequent sonication in water. The size distributions of CNCs were comprehensively evaluated by turbidimetry, small angle X-ray scattering, and microscopy to predict their intrinsic viscosities. Experimental intrinsic viscosities [η] of the CNC dispersions were evaluated by shear viscosity measurement, and then compared with their theoretical [η] values based on theories for rotational motions of rigid rods. The experimental [η] values for the straight CNCs were in good agreement with their theoretical [η] values, irrespective of the size and distributions. On the other hand, the experimental [η] value of the kinked CNC was higher than the theoretical [η] value, in agreement with a theoretical calculation giving higher intrinsic viscosities for bent fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Azizi Samir MAS, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromol 6(2):612–626

    Article  Google Scholar 

  • Boluk Y, Lahiji R, Zhao L, McDermott MT (2011) Suspension viscosities and shape parameter of cellulose nanocrystals (CNC). Colloids Surf A 377(1–3):297–303

    Article  CAS  Google Scholar 

  • Broersma S (1960) Rotational diffusion constant of a cylindrical particle. J Chem Phys 32(6):1626–1631

    Article  CAS  Google Scholar 

  • Carr ME Jr, Hermans J (1978) Size and density of fibrin fibers from turbidity. Macromolecules 11(1):46–50

    Article  CAS  Google Scholar 

  • de Souza Lima M, Wong J, Paillet M, Borsali R, Pecora R (2003) Translational and rotational dynamics of rodlike cellulose whiskers. Langmuir 19(1):24–29

    Article  Google Scholar 

  • Doi M, Edwards SF (1986) The theory of polymer dynamics. Oxford University Press, New York

    Google Scholar 

  • Dong XM, Gray DG (1997) Effect of counterions on ordered phase formation in suspensions of charged rodlike cellulose crystallites. Langmuir 13(8):2404–2409

    Article  CAS  Google Scholar 

  • Dong XM, Kimura T, Revol J-F, Gray DG (1996) Effects of ionic strength on the isotropic–chiral nematic phase transition of suspensions of cellulose crystallites. Langmuir 12(8):2076–2082

    Article  CAS  Google Scholar 

  • Dong XM, Revol J-F, Gray DG (1998) Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose 5(1):19–32

    Article  CAS  Google Scholar 

  • Eichhorn SJ (2011) Cellulose nanowhiskers: promising materials for advanced applications. Soft Matter 7(2):303–315

    Article  CAS  Google Scholar 

  • Elazzouzi-Hafraoui S, Nishiyama Y, Putaux J-L, Heux L, Dubreuil F, Rochas C (2007) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromol 9(1):57–65

    Article  Google Scholar 

  • Favier V, Chanzy H, Cavaille J (1995) Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules 28(18):6365–6367

    Article  CAS  Google Scholar 

  • Fedors RF (1979) An equation suitable for describing the viscosity of dilute to moderately concentrated polymer solutions. Polymer 20(2):225–228

    Article  CAS  Google Scholar 

  • Furuta T, Yamahara E, Konishi T, Ise N (1996) Ordering in aqueous cellulose hydrolysate dispersions: an ultra-small-angle X-ray scattering study. Macromolecules 29(27):8994–8995

    Article  CAS  Google Scholar 

  • Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110(6):3479–3500

    Article  CAS  Google Scholar 

  • Helbert W, Nishiyama Y, Okano T, Sugiyama J (1998) Molecular imaging ofhalocynthia papillosacellulose. J Struct Biol 124(1):42–50

    Article  CAS  Google Scholar 

  • Hirai A, Inui O, Horii F, Tsuji M (2008) Phase separation behavior in aqueous suspensions of bacterial cellulose nanocrystals prepared by sulfuric acid treatment. Langmuir 25(1):497–502

    Article  Google Scholar 

  • Iwamoto S, Kai W, Isogai A, Iwata T (2009) Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromol 10(9):2571–2576

    Article  CAS  Google Scholar 

  • Marchessault R, Morehead F, Koch MJ (1961) Some hydrodynamic properties of neutral suspensions of cellulose crystallites as related to size and shape. J Colloid Sci 16(4):327–344

    Article  CAS  Google Scholar 

  • Parra-Vasquez ANG, Stepanek I, Davis VA, Moore VC, Haroz EH, Shaver J, Hauge RH, Smalley RE, Pasquali M (2007) Simple length determination of single-walled carbon nanotubes by viscosity measurements in dilute suspensions. Macromolecules 40(11):4043–4047

    Article  CAS  Google Scholar 

  • Revol J-F, Bradford H, Giasson J, Marchessault R, Gray D (1992) Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int J Biol Macromol 14(3):170–172

    Article  CAS  Google Scholar 

  • Saito T, Kuramae R, Wohlert J, Berglund LA, Isogai A (2013) An ultrastrong nanofibrillar biomaterial: the strength of single cellulose nanofibrils revealed via sonication-induced fragmentation. Biomacromol 14(1):248–253

    Article  CAS  Google Scholar 

  • Sakurada I, Nukushina Y, Ito T (1962) Experimental determination of the elastic modulus of crystalline regions in oriented polymers. J Polym Sci 57(165):651–660

    Article  CAS  Google Scholar 

  • Shimizu M, Saito T, Nishiyama Y, Iwamoto S, Yano H, Isogai A, Endo T (2016) Fast and robust nanocellulose width estimation using turbidimetry. Macromol Rapid Commun 37:1581–1586

    Article  CAS  Google Scholar 

  • Šturcová A, Davies GR, Eichhorn SJ (2005) Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromol 6(2):1055–1061

    Article  Google Scholar 

  • Sugiyama J, Vuong R, Chanzy H (1991) Electron diffraction study on the two crystalline phases occurring in native cellulose from an algal cell wall. Macromolecules 24(14):4168–4175

    Article  CAS  Google Scholar 

  • Tanaka R, Saito T, Ishii D, Isogai A (2014) Determination of nanocellulose fibril length by shear viscosity measurement. Cellulose 21(3):1581–1589

    Article  CAS  Google Scholar 

  • Tanaka R, Saito T, Hondo H, Isogai A (2015) Influence of flexibility and dimensions of nanocelluloses on the flow properties of their aqueous dispersions. Biomacromol 16(7):2127–2131

    Article  CAS  Google Scholar 

  • Tanaka R, Saito T, Hänninen T, Ono Y, Hakalahti M, Tammelin T, Isogai A (2016) Viscoelastic properties of core–shell-structured, hemicellulose-rich nanofibrillated cellulose in dispersion and wet-film states. Biomacromol 17(6):2104–2111

    Article  CAS  Google Scholar 

  • Terech P, Chazeau L, Cavaille J (1999) A small-angle scattering study of cellulose whiskers in aqueous suspensions. Macromolecules 32(6):1872–1875

    Article  CAS  Google Scholar 

  • Tozzi EJ, Klingenberg DJ, Scott CT (2008) Correlation of fiber shape measures with dilute suspension properties. Nord Pulp Pap Res J 23(4):369–373

    Article  CAS  Google Scholar 

  • Wierenga AM, Philipse AP (1996) Low-shear viscosities of dilute dispersions of colloidal rodlike silica particles in cyclohexane. J Colloid Interface Sci 180(2):360–370

    Article  CAS  Google Scholar 

  • Wohlert J, Bergenstråhle-Wohlert M, Berglund LA (2012) Deformation of cellulose nanocrystals: entropy, internal energy and temperature dependence. Cellulose 19(6):1821–1836

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Core Research for Evolutional Science and Technology of the Japan Science and Technology Agency and Grants-in-Aid for Scientific Research (Grant Numbers JP 16J05556 and 15H04524) from the Japan Society for the Promotion of Science. We thank the NanoBio-ICMG platform (FR 2607 Grenoble) for granting access to the electron microscopy facility and Okasei Ltd., Onagawa, Japan for supplying tunicate samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiharu Nishiyama.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 825 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanaka, R., Kuribayashi, T., Ogawa, Y. et al. Ensemble evaluation of polydisperse nanocellulose dimensions: rheology, electron microscopy, X-ray scattering and turbidimetry. Cellulose 24, 3231–3242 (2017). https://doi.org/10.1007/s10570-017-1334-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-017-1334-6

Keywords

Navigation