Skip to main content
Log in

Vinylphosphonic acid/methacrylamide system as a durable intumescent flame retardant for cotton fabric

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

A novel intumescent flame retardant treatment, consisting of vinylphosphonic acid (VPA) as the acid source and methacrylamide (MAA) as blowing agent, was designed and applied onto cotton fabrics. The grafting of reactive monomers onto cellulose chains was carried out using potassium persulfate as initiator of a radical polymerization technique. The thermal and fire behaviour of the treated fabrics was thoroughly investigated: in particular, the VPA/MAA coating was able to exert a protective action, giving rise to the formation of a stable swollen char on the surface of textile fibers upon heating, hence improving the flame retardancy of cotton. In addition, the treated fabric achieved self-extinction as assessed by horizontal flame spread tests. Finally, a remarkable weight loss was observed only after the first washing cycle, then the samples did not show any significant weight loss, hence confirming the durability of the self-extinguishing treatment, even after five laundering cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alongi J, Malucelli G (2012) State of the art and perspectives on sol–gel derived hybrid architectures for flame retardancy of textiles. J Mater Chem 22:21805–21809

    Article  CAS  Google Scholar 

  • Alongi J, Malucelli G (2015) Thermal degradation of cellulose and cellulosic substrates. In: Tiwari A, Raj B (eds) Reactions and mechanisms in thermal analysis of advanced materials. Wiley, Hoboken, pp 301–332

    Chapter  Google Scholar 

  • Alongi J, Ciobanu M, Malucelli G (2011) Novel flame retardant finishing systems for cotton fabrics based on phosphorus-containing compounds and silica derived from sol–gel processes. Carbohydr Polym 85:599–608

    Article  CAS  Google Scholar 

  • Alongi J, Brancatelli G, Rosace G (2012a) Thermal properties and combustion behavior of POSS- and bohemite-finished cotton fabrics. J Appl Polym Sci 123:426–436

    Article  CAS  Google Scholar 

  • Alongi J, Carosio F, Malucelli G (2012b) Layer by layer complex architectures based on ammonium polyphosphate, chitosan and silica on polyester–cotton blends: flammability and combustion behaviour. Cellulose 19:1041–1050

    Article  CAS  Google Scholar 

  • Alongi J, Colleoni C, Rosace G, Malucelli G (2012c) Thermal and fire stability of cotton fabrics coated with hybrid phosphorus-doped silica films. J Therm Anal Calorim 110:1207–1216

    Article  CAS  Google Scholar 

  • Alongi J, Colleoni C, Rosace G, Malucelli G (2013) Phosphorus- and nitrogen-doped silica coatings for enhancing the flame retardancy of cotton: synergisms or additive effects? Polym Degrad Stab 98:579–589

    Article  CAS  Google Scholar 

  • Alongi J, Carosio F, Malucelli G (2014a) Current emerging techniques to impart flame retardancy to fabrics: an overview. Polym Degrad Stab 106:138–149

    Article  CAS  Google Scholar 

  • Alongi J, Colleoni C, Rosace G, Malucelli G (2014b) Sol–gel derived architectures for enhancing cotton flame retardancy: effect of pure and phosphorus-doped silica phases. Polym Degrad Stab 99:92–98

    Article  CAS  Google Scholar 

  • Alongi J, Tata J, Carosio F et al (2014c) A comparative analysis of nanoparticle adsorption as fire-protection approach for fabrics. Polymers 7:47–68

    Article  Google Scholar 

  • Anna P, Marosi G, Bertalan G et al (2002) Structure-property relationship in flame retardant polymers. J Macromol Sci Part B 41:1321–1330

    Article  Google Scholar 

  • Aseeva RM, Zaikov GE (1985) Flammability of polymeric materials. In: Key polymers properties and performance. Advances in polymer science, vol 70. Springer, Berlin, Heidelberg, pp 171–229

  • Bantchev GB, Moser BR, Murray RE et al (2016) Synthesis and characterization of phosphonates from methyl linoleate and vegetable oils. J Am Oil Chem Soc 93:1671–1682

    Article  CAS  Google Scholar 

  • Bourbigot S (2008) Flame retardancy of textiles—new approaches. In: Horrocks AR, Price D (eds) Advances in fire retardant materials. CRC Press LLC, Cambridge, pp 9–40

    Chapter  Google Scholar 

  • Brancatelli G, Colleoni C, Massafra MR, Rosace G (2011) Effect of hybrid phosphorus-doped silica thin films produced by sol–gel method on the thermal behavior of cotton fabrics. Polym Degrad Stab 96:483–490

    Article  CAS  Google Scholar 

  • Carlsson L, Rose S, Hourdet D, Marcellan A (2010) Nano-hybrid self-crosslinked PDMA/silica hydrogels. Soft Matter 6:3619

    Article  CAS  Google Scholar 

  • Casale A, Bosco F, Malucelli G et al (2016) DNA-chitosan cross-linking and photografting to cotton fabrics to improve washing fastness of the fire-resistant finishing. Cellulose 23:3963–3984

    Article  Google Scholar 

  • Chung C, Lee M, Choe EK (2004) Characterization of cotton fabric scouring by FT-IR ATR spectroscopy. Carbohydr Polym 58:417–420

    Article  CAS  Google Scholar 

  • Ebdon JR, Price D, Hunt BJ et al (2000) Flame retardance in some polystyrenes and poly(methyl methacrylate)s with covalently bound phosphorus-containing groups: initial screening experiments and some laser pyrolysis mechanistic studies. Polym Degrad Stab 69:267–277

    Article  CAS  Google Scholar 

  • Edwards HG, Johnson A, Lewis I, Wheelwright S (1993) Raman and FTIR spectroscopic studies of copolymers of methyl methacrylate with butadiene. Spectrochim Acta Part A Mol Spectrosc 49:457–464

    Article  Google Scholar 

  • El-Hady BA, Ibrahim MM (2004) Graft copolymerization of acrylamide onto carboxymethylcellulose with the xanthate method. J Appl Polym Sci 93:271–278

    Article  CAS  Google Scholar 

  • Grancaric AM, Botteri L, Alongi J, Malucelli G (2015) Synergistic effects occurring between water glasses and urea/ammonium dihydrogen phosphate pair for enhancing the flame retardancy of cotton. Cellulose 22:2825–2835

    Article  CAS  Google Scholar 

  • Guido E, Alongi J, Colleoni C et al (2013) Thermal stability and flame retardancy of polyester fabrics sol–gel treated in the presence of boehmite nanoparticles. Polym Degrad Stab 98:1609–1616

    Article  CAS  Google Scholar 

  • Gürdağ G, Sarmad S (2013) Cellulose graft copolymers: synthesis, properties, and applications. In: Kalia S, Sabaa MW (eds) Polysaccharide based graft copolymers. Springer, Berlin, pp 15–57

    Chapter  Google Scholar 

  • Horrocks AR (1986) Flame-retardant finishing of textiles. Rev Prog Color Relat Top 16:62–101

    Article  CAS  Google Scholar 

  • Horrocks AR (2001) Textiles. In: Horrocks AR, Price D (eds) Fire retardant materials. Woodhead Publishing Ltd and CRC Press LLC, Cambridge, England, pp 128–181

    Chapter  Google Scholar 

  • Horrocks AR (2003) Flame retardant finishes and finishing. In: Heywood D (ed) Textile finishing. Society of Dyers and Colourists, Bradford, pp 215–250

    Google Scholar 

  • Horrocks AR (2011) Flame retardant challenges for textiles and fibres: new chemistry versus innovatory solutions. Polym Degrad Stab 96:377–392

    Article  CAS  Google Scholar 

  • Jenkins DW, Hudson SM (2001) Review of vinyl graft copolymerization featuring recent advances toward controlled radical-based reactions and illustrated with chitin/chitosan trunk polymers. Chem Rev 101:3245–3273

    Article  CAS  Google Scholar 

  • Kappes RS, Urbainczyk T, Artz U et al (2016) Flame retardants based on amino silanes and phenylphosphonic acid. Polym Degrad Stab 129:168–179

    Article  CAS  Google Scholar 

  • Khalil MI, Mostafa KM, Hebeish A (1993) Graft polymerization of acrylamide onto maize starch using potassium persulfate as initiator. Die Angew Makromol Chem 213:43–54

    Article  CAS  Google Scholar 

  • Kumar A, Singh K, Ahuja M (2009) Xanthan-g-poly(acrylamide): microwave-assisted synthesis, characterization and in vitro release behavior. Carbohydr Polym 76:261–267

    Article  CAS  Google Scholar 

  • Lanthong P, Nuisin R, Kiatkamjornwong S (2006) Graft copolymerization, characterization, and degradation of cassava starch-g-acrylamide/itaconic acid superabsorbents. Carbohydr Polym 66:229–245

    Article  CAS  Google Scholar 

  • Laoutid F, Bonnaud L, Alexandre M et al (2009) New prospects in flame retardant polymer materials: from fundamentals to nanocomposites. Mater Sci Eng R Rep 63:100–125

    Article  Google Scholar 

  • Li Y-C, Schulz J, Mannen S et al (2010) flame retardant behavior of polyelectrolyte–clay thin film assemblies on cotton fabric. ACS Nano 4:3325–3337

    Article  CAS  Google Scholar 

  • Liao C-C, Rossignol AM (2000) Landmarks in burn prevention. Burns 26:422–434

    Article  CAS  Google Scholar 

  • Low MJD, Morterra C (1985) IR studies of carbons—V effects of NaCl on cellulose pyrolysis and char oxidation. Carbon 23:311–316

    Article  CAS  Google Scholar 

  • Lu S-Y, Hamerton I (2002) Recent developments in the chemistry of halogen-free flame retardant polymers. Prog Polym Sci 27:1661–1712

    Article  CAS  Google Scholar 

  • Morterra C, Low MJD (1985) IR studies of carbons—IV the vacuum pyrolysis of oxidized cellulose and the characterization of the chars. Carbon 23:301–310

    Article  CAS  Google Scholar 

  • Morterra C, Low MJD, Severdia AG (1984) IR studies of carbons-III. The oxidation of cellulose chars. Carbon N Y 22:5–12

    Article  CAS  Google Scholar 

  • Nooralian Z, Parvinzadeh Gashti M, Ebrahimi I (2016) Fabrication of a multifunctional graphene/polyvinylphosphonic acid/cotton nanocomposite via facile spray layer-by-layer assembly. RSC Adv 6:23288–23299

    Article  CAS  Google Scholar 

  • Parvinzadeh Gashti M, Almasian A (2013) UV radiation induced flame retardant cellulose fiber by using polyvinylphosphonic acid/carbon nanotube composite coating. Compos Part B Eng 45:282–289

    Article  CAS  Google Scholar 

  • Price D, Horrocks AR, Akalin M, Faroq AA (1997) Influence of flame retardants on the mechanism of pyrolysis of cotton (cellulose) fabrics in air. J Anal Appl Pyrolysis 40–41:511–524

    Article  Google Scholar 

  • Rohde D, Corcoran J, Sydes M, Higginson A (2016) The association between smoke alarm presence and injury and death rates: a systematic review and meta-analysis. Fire Saf J 81:58–63

    Article  Google Scholar 

  • Rosace G, Massafra MR (2008) Marking of cellulose yarn by vinyl monomer grafting. Text Res J 78:28–36

    Article  CAS  Google Scholar 

  • Salmeia K, Gaan S, Malucelli G (2016) Recent advances for flame retardancy of textiles based on phosphorus chemistry. Polymers 8:319

    Article  Google Scholar 

  • Shafizadeh F, Bradbury AGW (1979) Thermal degradation of cellulose in air and nitrogen at low temperatures. J Appl Polym Sci 23:1431–1442

    Article  CAS  Google Scholar 

  • Vasiljević J, Hadžić S, Jerman I et al (2013) Study of flame-retardant finishing of cellulose fibres: organic–inorganic hybrid versus conventional organophosphonate. Polym Degrad Stab 98:2602–2608

    Article  Google Scholar 

  • Wakelyn PJ, Bertoniere NR, French AD, Thibodeaux DP (2007) Cotton fiber chemistry and technology. CRC Press Taylor & Francis Group, LCC

    Google Scholar 

  • Weil ED, Levchik SV (2008) Flame retardants in commercial use or development for textiles. J Fire Sci 26:243–281

    Article  CAS  Google Scholar 

  • Yildiz Z, Onen A, Gungor A (2016) Preparation of flame retardant epoxyacrylate-based adhesive formulations for textile applications. J Adhes Sci Technol 30:1–14

    Article  Google Scholar 

  • Zhu S, Hamielec AE (1993) Kinetics of network formation via free-radical mechanisms—polymerization and polymer modification. Makromol Chem Macromol Symp 69:247–256

    Article  CAS  Google Scholar 

  • WHO (1997) Environmental health criteria 192 flame retardants: a general introduction. International Programme on Chemical Safety. World Health Organization, Geneva. http://www.inchem.org/documents/ehc/ehc/ehc192.htm

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Rosace.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosace, G., Colleoni, C., Trovato, V. et al. Vinylphosphonic acid/methacrylamide system as a durable intumescent flame retardant for cotton fabric. Cellulose 24, 3095–3108 (2017). https://doi.org/10.1007/s10570-017-1294-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-017-1294-x

Keywords

Navigation