Skip to main content
Log in

Cellulose nanocrystal surface functionalization for the controlled sorption of water and organic vapours

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The surface grafting of cellulose nanocrystals (CNC) is a valuable tool to increase opportunities for their application. This work had several goals designed to improve CNC: reduction of hornification, increased re-dispersibility after CNC drying, and tuning of the surface graft to enhance the adsorption of particular molecules. To achieve this, the CNC surfaces were modified chemically with aromatic surface grafts using widely employed methods: the creation of urethane linkages, silylation and esterification. Even a low degree of grafting sufficed to increase water contact angles to as much as 96°. The analysis of water sorption isotherms showed that at high water activities, capillary condensation could be suppressed and hysteresis was decreased. This indicates that hornification was significantly suppressed. However, although the contact angles increased, the water sorption isotherms were changed only slightly because of reduced hysteresis. The grafts were not able to shield the surface from water vapour sorption. A comparison of the sorption isotherms of anisole and cyclohexane, sorbates with a similar surface area, showed that the sorption of anisole was three times higher than that of cyclohexane. The specific sorption of aromatic molecules was achieved and the most efficient methodology was the esterification of CNC with carboxylic acids containing a flexible linker between the aromatic moiety and ester bond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agrawal AM, Manek RV, Kolling WM, Neau SH (2004) Water distribution studies within microcrystalline cellulose and chitosan using differential scanning calorimetry and dynamic vapor sorption analysis. J Pharma Sci 93:1766–1779. doi:10.1002/jps.20085

    Article  CAS  Google Scholar 

  • Alila S, Boufi S (2009) Removal of organic pollutants from water by modified cellulose fibres. Ind Crops Prod 30:93–104. doi:10.1016/j.indcrop.2009.02.005

    Article  CAS  Google Scholar 

  • Alila S, Boufi S, Belgacem MN, Beneventi D (2005) Adsorption of a cationic surfactant onto cellulosic fibers—I. Surface charge effects. Langmuir 21:8106–8113. doi:10.1021/la050367n

    Article  CAS  Google Scholar 

  • Alila S, Aloulou F, Thielemans W, Boufi S (2011) Sorption potential of modified nanocrystals for the removal of aromatic organic pollutant from aqueous solution. Ind Crops Prod 33:350–357. doi:10.1016/j.indcrop.2010.11.010

    Article  CAS  Google Scholar 

  • Ambrosio-Martin J, Fabra MJ, Lopez-Rubio A, Lagaron JM (2015) Melt polycondensation to improve the dispersion of bacterial cellulose into polylactide via melt compounding: enhanced barrier and mechanical properties. Cellulose 22:1201–1226. doi:10.1007/s10570-014-0523-9

    Article  CAS  Google Scholar 

  • Andrade RD, Lemus R, Perez CE (2011) Models of sorption isotherms for food: uses and limitations. Vitae 18:324–333

    Google Scholar 

  • Belbekhouche S, Bras J, Siqueira G, Chappey C, Lebrun L, Khelifi B, Marais S, Dufresne A (2011) Water sorption behavior and gas barrier properties of cellulose whiskers and microfibrils films. Carbohydr Polym 83:1740–1748. doi:10.1016/j.carbpol.2010.10.036

    Article  CAS  Google Scholar 

  • Bondeson D, Mathew A, Oksman K (2006) Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 13:171–180. doi:10.1007/s10570-006-9061-4

    Article  CAS  Google Scholar 

  • Carpenter AW, de Lannoy CF, Wiesner MR (2015) Cellulose nanomaterials in water treatment technologies. Environ Sci Technol 49:5277–5287. doi:10.1021/es506351r

    Article  CAS  Google Scholar 

  • Clemenson S, Espuche E, David L, Leonard D (2010) Nanocomposite membranes of polyetherimide nanostructured with palladium particles: processing route, morphology and functional properties. J Membr Sci 361:167–175. doi:10.1016/j.memsci.2010.05.061

    Article  CAS  Google Scholar 

  • Dekany I, Szanto F, Nagy LG (1986) Sorption and immersional wetting on clay-minerals having modified surface. 2. Interlamellar sorption and wetting on organic montmorillonites. J Colloid Interface Sci 109:376–384. doi:10.1016/0021-9797(86)90316-4

    Article  CAS  Google Scholar 

  • Douillard J-M, Malandrini H (1999) Récents développements liés à l’enthalpie d’immersion. Comptes Rendus de l’Académie des Sciences - Series IIC - Chemistry 2:1–18. doi:10.1016/S1387-1609(99)80032-2

    Article  CAS  Google Scholar 

  • Dufresne A (2003) Interfacial phenomena in nanocomposites based on polysaccharide nanocrystals. Compos Interfaces 10:369–387. doi:10.1163/156855403771953641

    Article  CAS  Google Scholar 

  • Espino-Perez E, Bras J, Ducruet V, Guinault A, Dufresne A, Domenek S (2013) Influence of chemical surface modification of cellulose nanowhiskers on thermal, mechanical, and barrier properties of poly(lactide) based bionanocomposites. Eur Polym J 49:3144–3154. doi:10.1016/j.eurpolymj.2013.07.017

    Article  CAS  Google Scholar 

  • Espino-Perez E, Domenek S, Belgacem N, Sillard C, Bras J (2014) Green process for chemical functionalization of nanocellulose with carboxylic acids. Biomacromolecules 15:5441–5460. doi:10.1021/bm5013458

    Article  Google Scholar 

  • Espino-Perez E, Gilbert RG, Domenek S, Brochier-Salon MC, Belgacem MN, Bras J (2016a) Nanocomposites with functionalised polysaccharide nanocrystals through aqueous free radical polymerisation promoted by ozonolysis. Carbohydr Polym 135:256–266. doi:10.1016/j.carbpol.2015.09.005

    Article  CAS  Google Scholar 

  • Espino-Perez E, Domenek S, Brochier Salon M-C, Belgacem N, Bras J (2016b) Study of cellulose nanocrystals grafted alkoxysilane: hydrolysis–condensation effects. Personal communication (publication to be submitted)

  • Eyley S, Thielemans W (2014) Surface modification of cellulose nanocrystals. Nanoscale 6:7764–7779. doi:10.1039/c4nr01756k

    Article  CAS  Google Scholar 

  • Factorovich MH, Solveyra EG, Molinero V, Scherlis DA (2014) Sorption isotherms of water in nanopores: relationship between hydropohobicity, adsorption pressure, and hysteresis. J Phys Chem C 118:16290–16300. doi:10.1021/jp5000396

    Article  CAS  Google Scholar 

  • Fang X, Vitrac O, Domenek S, Ducruet V (2012) Controlling the molecular interactions to improve the diffusion barrier of biosourced polymers to organic solutes. Defect Diffus Forum 323–325:269–274. doi:10.4028/www.scientific.net/DDF.323-325.269

    Article  Google Scholar 

  • Follain N, Belbekhouche S, Bras J, Siqueira G, Marais S, Dufresne A (2013) Water transport properties of bio-nanocomposites reinforced by Luffa cylindrica cellulose nanocrystals. J Membr Sci 427:218–229. doi:10.1016/j.memsci.2012.09.048

    Article  CAS  Google Scholar 

  • Fortunati E, Peltzer M, Armentano I, Jimenez A, Kenny JM (2013) Combined effects of cellulose nanocrystals and silver nanoparticles on the barrier and migration properties of PLA nano-biocomposites. J Food Eng 118:117–124. doi:10.1016/j.jfoodeng.2013.03.025

    Article  CAS  Google Scholar 

  • Habibi Y (2014) Key advances in the chemical modification of nanocelluloses. Chem Soc Rev 43:1519–1542. doi:10.1039/c3cs60204d

    Article  CAS  Google Scholar 

  • Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500. doi:10.1021/cr900339w

    Article  CAS  Google Scholar 

  • Hansford DT, Grant DJW, Newton JM (1980) Surface energetics of the wetting of a hydrophobic powder. J Chem Soc Faraday Trans I 76:2417–2431. doi:10.1039/f19807602417

    Article  CAS  Google Scholar 

  • Hanson B, Pryamitsyn V, Ganesan V (2012) Computer simulations of gas diffusion in polystyrene-C-60 fullerene nanocomposites using trajectory extending kinetic Monte Carlo method. J Phys Chem B 116:95–103. doi:10.1021/jp209294t

    Article  CAS  Google Scholar 

  • Kachrimanis K, Noisternig MF, Griesser UJ, Malamataris S (2006) Dynamic moisture sorption and desorption of standard and silicified microcrystalline cellulose. Eur J Pharm Biopharm 64:307–315. doi:10.1016/j.ejpb.2006.05.019

    Article  CAS  Google Scholar 

  • Kocherbitov V, Ulvenlund S, Kober M, Jarring K, Arnebrant T (2008) Hydration of microcrystalline cellulose and milled cellulose studied by sorption calorimetry. J Phys Chem B 112:3728–3734. doi:10.1021/jp711554c

    Article  CAS  Google Scholar 

  • Korhonen JT, Kettunen M, Ras RHA, Ikkala O (2011) Hydrophobic nanocellulose aerogels as floating, sustainable, reusable, and recyclable oil absorbents. ACS Appl Mater Interfaces 3:1813–1816. doi:10.1021/am200475b

    Article  CAS  Google Scholar 

  • Lam E, Male KB, Chong JH, Leung ACW, Luong JHT (2012) Applications of functionalized and nanoparticle-modified nanocrystalline cellulose. Trends Biotechnol 30:283–290. doi:10.1016/j.tibtech.2012.02.001

    Article  CAS  Google Scholar 

  • Lemahieu L, Bras J, Tiquet P, Augier S, Dufresne A (2011) Extrusion of nanocellulose-reinforced nanocomposites using the dispersed nano-objects protective encapsulation (DOPE). Process Macromol Mater Eng 296:984–991. doi:10.1002/mame.201100015

    Article  CAS  Google Scholar 

  • Lu P, Hsieh Y-L (2010) Preparation and properties of cellulose nanocrystals: rods, spheres, and network. Carbohydr Polym 82:329–336. doi:10.1016/j.carbpol.2010.04.073

    Article  Google Scholar 

  • Lu P, Hsieh Y-L (2012) Preparation and characterization of cellulose nanocrystals from rice straw. Carbohydr Polym 87:564–573. doi:10.1016/j.carbpol.2011.08.022

    Article  CAS  Google Scholar 

  • Mariano M, El Kissi N, Dufresne A (2014) Cellulose nanocrystals and related nanocomposites: review of some properties and challenges. J Polym Sci B Polym Phys 52:791–806. doi:10.1002/polb.23490

    Article  CAS  Google Scholar 

  • Mihranyan A, Llagostera AP, Karmhag R, Strømme M, Ek R (2004) Moisture sorption by cellulose powders of varying crystallinity. Int J Pharm 269:433–442. doi:10.1016/j.ijpharm.2003.09.030

    Article  CAS  Google Scholar 

  • Morandi G, Heath L, Thielemans W (2009) Cellulose nanocrystals grafted with polystyrene chains through surface-initiated atom transfer radical polymerization (SI-ATRP). Langmuir 25:8280–8286. doi:10.1021/la900452a

    Article  CAS  Google Scholar 

  • Parida SK, Dash S, Patel S, Mishra BK (2006) Adsorption of organic molecules on silica surface. Adv Colloid Interface 121:77–110. doi:10.1016/j.cis.2006.05.028

    Article  CAS  Google Scholar 

  • Park S, Baker J, Himmel M, Parilla P, Johnson D (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:1–10. doi:10.1186/1754-6834-3-10

    Article  Google Scholar 

  • Portugal I, Dias VM, Duarte RF, Evtuguin DV (2010) Hydration of cellulose/silica hybrids assessed by sorption isotherms. J Phys Chem B 114:4047–4055. doi:10.1021/jp911270y

    Article  CAS  Google Scholar 

  • Pradas MM, Sanchez MS, Ferrer GG, Ribelles JLG (2004) Thermodynamics and statistical mechanics of multilayer adsorption. J Chem Phys 121:8524–8531. doi:10.1063/1.1802271

    Article  Google Scholar 

  • Quirijns EJ, van Boxtel AJB, van Loon WKP, van Straten G (2005) Sorption isotherms, GAB parameters and isosteric heat of sorption. J Sci Food Agric 85:1805–1814. doi:10.1002/jsfa.2140

    Article  CAS  Google Scholar 

  • Rodrigues FHA, Spagnol C, Pereira AGB, Martins AF, Fajardo AR, Rubira AF, Muniz EC (2014) Superabsorbent hydrogel composites with a focus on hydrogels containing nanofibers or nanowhiskers of cellulose and chitin. J Appl Polym Sci 131:39725. doi: 10.1002/app.39725

  • Roskar R, Kmetec V (2005) Evaluation of the moisture sorption behaviour of several excipients by BET, GAB and microcalorimetric approaches. Chem Pharm Bull 53:662–665. doi:10.1248/cpb.53.662

    Article  CAS  Google Scholar 

  • Salazar R, Domenek S, Ducruet V (2014) Interactions of flavoured oil in-water emulsions with polylactide. Food Chem 148:138–146

    Article  CAS  Google Scholar 

  • Sèbe G, Ham-Pichavant F, Ibarboure E, Koffi ALC, Tingaut P (2012) Supramolecular structure characterization of cellulose II nanowhiskers produced by acid hydrolysis of cellulose I substrates. Biomacromolecules 13:570–578. doi:10.1021/bm201777j

    Article  Google Scholar 

  • Sing KSW (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. (Recommendations 1984). Pure Appl Chem 57:603–619. doi:10.1351/pac198557040603

    Article  CAS  Google Scholar 

  • Siqueira G, Bras J, Dufresne A (2010) New process of chemical grafting of cellulose nanoparticles with a long chain isocyanate. Langmuir 26:402–411. doi:10.1021/la9028595

    Article  CAS  Google Scholar 

  • Thielemans W, Belgacem MN, Dufresne A (2006) Starch nanocrystals with large chain surface modifications. Langmuir 22:4804–4810. doi:10.1021/la053394m

    Article  CAS  Google Scholar 

  • Timmermann EO (2003) Multilayer sorption parameters: BET or GAB values? Colloid Surf A Physicochem Eng Asp 220:235–260. doi:10.1016/s0927-7757(03)00059-1

    Article  CAS  Google Scholar 

  • Van Den Berg C (1984) Description of water activity of food for engineering purposes by means of the GAB model of sorption. Eng Foods 1:311–320

    Google Scholar 

  • Volkova N, Ibrahim V, Hatti-Kaul R, Wadso L (2012) Water sorption isotherms of Kraft lignin and its composites. Carbohydr Polym 87:1817–1821. doi:10.1016/j.carbpol.2011.10.001

    Article  CAS  Google Scholar 

  • Wu WB, Zhang L (2014) Functionalization and applications of nanocrystalline cellulose. Prog Chem 26:403–414. doi:10.7536/pc130657

    CAS  Google Scholar 

Download references

Acknowledgments

This work received support from the Mexican Scholarship Council (CONACyT) under Grant No. 213840. The authors wish to thank Monique Randrianarivo for her assistance with μ-DSC analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Domenek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Espino-Pérez, E., Bras, J., Almeida, G. et al. Cellulose nanocrystal surface functionalization for the controlled sorption of water and organic vapours. Cellulose 23, 2955–2970 (2016). https://doi.org/10.1007/s10570-016-0994-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-016-0994-y

Keywords

Navigation