Skip to main content
Log in

Application of chemometric analysis to infrared spectroscopy for the identification of wood origin

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

In this study, the chemical characteristics of wood are used for plant taxonomic classification based on the current Angiosperm Phylogeny Group classification (APG III System) for the division, class and subclass of woody plants. Infrared spectra contain information about the molecular structure and intermolecular interactions among the components in wood, but the understanding of this information requires multivariate techniques for the analysis of highly dense data sets. This article is written with the purposes of specifying the chemical differences among taxonomic groups and predicting the taxa of unknown samples with a mathematical model. Principal component analysis, t test, stepwise discriminant analysis and linear discriminant analysis were some of the multivariate techniques chosen. A procedure to determine the division, class, subclass and order of unknown samples was built with promising implications for future applications of Fourier transform infrared spectroscopy in wood taxonomy classification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Åkerholm M, Salmén L, Salme L (2001) Interactions between wood polymers studied by dynamic FT-IR spectroscopy. Polymer 42(3):963–969. doi:10.1016/S0032-3861(00)00434-1

    Article  Google Scholar 

  • Anchukaitis KJ, Evans MN, Lange T, Smith DR, Leavitt SW, Schrag DP (2008) Consequences of a rapid cellulose extraction technique for oxygen isotope and radiocarbon analyses. Anal Chem 80(6):2035–2041. doi:10.1016/j.gca.2004.01.006.Analytical

    Article  CAS  Google Scholar 

  • Barnett JR, Jeronimidis G (2003) Wood quality and its biological basis. Blackwell, Oxford, p 226

    Google Scholar 

  • Bjarnestad S, Dahlman O (2002) Chemical compositions of hardwood and softwood pulps employing photoacoustic fourier transform infrared spectroscopy in combination with partial least-squares analysis. Anal Chem 74(22):5851–5858. doi:10.1021/ac025926z

    Article  CAS  Google Scholar 

  • Carballo-Meilan A, Goodman AM, Baron MG, Gonzalez-Rodriguez J (2014) A specific case in the classification of woods by FTIR and chemometric: discrimination of Fagales from Malpighiales. Cellulose 21(1):261–273. doi:10.1007/s10570-013-0093-2

    Article  Google Scholar 

  • Chase MW, Reveal JL (2009) A phylogenetic classification of the land plants to accompany APG III. Bot J Linn Soc 161(2):122–127. doi:10.1111/j.1095-8339.2009.01002.x

    Article  Google Scholar 

  • Chen J, Liu C, Chen Y, Chen Y, Chang PR (2008) Structural characterization and properties of starch/konjac glucomannan blend films. Carbohydr Polym 74(4):946–952. doi:10.1016/j.carbpol.2008.05.021

    Article  CAS  Google Scholar 

  • Chernick MR (2011) Bootstrap methods: a guide for practitioners and researchers. Wiley, Hoboken, NJ, p 400

    Google Scholar 

  • Christenhusz MJM, Reveal JL, Farjon A, Gardner MF, Mill RR, Chase MW (2011) A new classification and linear sequence of extant gymnosperms. Phytotaxa 19:55–70. doi:10.1093/pcp/pcs187

    Article  Google Scholar 

  • Coates J (2000) Interpretation of infrared spectra, a practical approach. Encycl Anal Chem 10815–10837

  • Ek M, Gellerstedt G, Henriksson G (2009) Wood chemistry and wood biotechnology. Walter de Gruyter, Berlin, p 308

    Book  Google Scholar 

  • Erdtman H (1963) Some aspects of chemotaxonomy. Chem Plant Taxon 89–125

  • Gidman E, Goodacre R, Emmett B, Smith AR, Gwynn-Jones D (2003) Investigating plant–plant interference by metabolic fingerprinting. Phytochemistry 63(6):705–710. doi:10.1016/S0031-9422(03)00288-7

    Article  CAS  Google Scholar 

  • Gorgulu ST, Dogan M, Severcan F (2007) The characterization and differentiation of higher plants by Fourier transform infrared spectroscopy. Appl Spectrosc 61(3):300–308. doi:10.1366/000370207780220903

    Article  CAS  Google Scholar 

  • Hobro A, Kuligowski J, Döll M, Lendl B (2010) Differentiation of walnut wood species and steam treatment using ATR-FTIR and partial least squares discriminant analysis (PLS-DA). Anal Bioanal Chem 398(6):2713–2722. doi:10.1007/s00216-010-4199-1

    Article  CAS  Google Scholar 

  • Huang A, Zhou Q, Liu J, Fei B, Sun S (2008) Distinction of three wood species by Fourier transform infrared spectroscopy and two-dimensional correlation IR spectroscopy. J Mol Struct 883–884:160–166. doi:10.1016/j.molstruc.2007.11.061

    Article  CAS  Google Scholar 

  • Kacuráková M, Kauráková M, Capek P, Sasinkova V, Wellner N, Ebringerova A, Kac M (2000) FT-IR study of plant cell wall model compounds: pectic polysaccharides and hemicelluloses. Carbohydr Polym 43(2):195–203. doi:10.1016/S0144-8617(00)00151-X

    Article  Google Scholar 

  • Kim SW, Ban SH, Chung HJ, Cho S, Choi PS, Yoo OJ, Liu JR (2004) Taxonomic discrimination of flowering plants by multivariate analysis of Fourier transform infrared spectroscopy data. Plant Cell Rep 23(4):246–250. doi:10.1007/s00299-004-0811-1

    Article  CAS  Google Scholar 

  • Klecka WR (1980) Discriminant analysis. Sage Publications, Beverly Hills, CA, p 71

    Google Scholar 

  • Kubo S, Kadla JF (2005) Hydrogen bonding in lignin: a Fourier transform infrared model compound study. Biomacromolecules. 6(5):2815–2821. doi:10.1021/bm050288q

    Article  CAS  Google Scholar 

  • Larkin P (2011) Infrared and Raman spectroscopy: principles and spectral interpretation. Elsevier, Amsterdam, Boston, p 230

    Google Scholar 

  • Liang C, Marchessault R (1959) Infrared spectra of crystalline polysaccharides. II. Native celluloses in the region from 640 to 1700 cm. J Polym Sci 39(135):269–278. doi:10.1002/pol.1959.1203913521

    Article  CAS  Google Scholar 

  • Marchessault RH (1962) Application of infra-red spectroscopy to cellulose and wood polysaccharides. Pure Appl Chem 5(1–2):107–130. doi:10.1351/pac196205010107

    CAS  Google Scholar 

  • Marchessault RH, Liang CY (1962) The infrared spectra of crystalline polysaccharides. VIII. Xylans. J Polym Sci 59(168):357–378. doi:10.1002/pol.1962.1205916813

    Article  CAS  Google Scholar 

  • Marchessault RH, Pearson FG, Liang CY (1960) Infrared spectra of crystalline polysaccharides. I. Hydrogen bonds in native celluloses. Biochim Biophys Acta 45:499–507

    Article  CAS  Google Scholar 

  • Martin JW (2007) Concise encyclopedia of the structure of materials. Elsevier, Amsterdam; Boston, p 512

    Google Scholar 

  • McCann MC, Bush M, Milioni D, Sado P, Stacey NJ, Catchpole G, Defernez M, Carpita NC, Hofte H, Ulvskov P, Wilson RH, Roberts K (2001) Approaches to understanding the functional architecture of the plant cell wall. Phytochemistry 57(6):811–821. doi:10.1016/S0031-9422(01)00144-3

    Article  CAS  Google Scholar 

  • Mohebby B (2005) Attenuated total reflection infrared spectroscopy of white-rot decayed beech wood. Int Biodeterior Biodegradation 55(4):247–251. doi:10.1016/j.ibiod.2005.01.003

    Article  CAS  Google Scholar 

  • Mohebby B (2008) Application of ATR infrared spectroscopy in wood acetylation. J Agric Sci 10:253–259

    Google Scholar 

  • Muruganantham S, Anbalagan G, Ramamurthy N (2009) FT-IR and SEM-EDS comparative analysis of medicinal plants, Eclipta Alba Hassk and Eclipta Prostrata Linn. Rom J Biophys 19(4):285–294

    Google Scholar 

  • Obst JR (1982) Guaiacyl and syringyl lignin composition in hardwood cell components. Holzforschung 36(3):143–152. doi:10.1515/hfsg.1982.36.3.143

    Article  CAS  Google Scholar 

  • Pandey KK (1999) A study of chemical structure of soft and hardwood and wood polymers by FTIR spectroscopy. J Appl Polym Sci 71(12):1969–1975. doi:10.1002/(SICI)1097-4628(19990321)71:12<1969:AID-APP6>3.3.CO;2-4

    Article  CAS  Google Scholar 

  • Pandey KK, Vuorinen T (2008) Comparative study of photodegradation of wood by a UV laser and a xenon light source. Polym Degrad Stab 93(12):2138–2146. doi:10.1016/j.polymdegradstab.2008.08.013

    Article  CAS  Google Scholar 

  • Pavia DL, Lampman GM, Kriz GS, Vyvyan JA (2009) Introduction to spectroscopy. Brooks/Cole, Cengage Learning, Belmont, CA, p 727

    Google Scholar 

  • Rakotomalala R (2005) TANAGRA: un logiciel gratuit pour l’enseignement et la recherche, pp. in Actes de EGC’2005, RNTI-E-3, vol 2, pp. 697–702

  • Rana R, Sciences F (2008) Correlation between anatomical/chemical wood properties and genetic markers as a means of wood certification. Nieders\”achsische Staats-und Universit\”atsbibliothek Göttingen. doi: 978-3-9811503-2-2

  • Rana R, Langenfeld-Heyser R, Finkeldey R, Polle A (2009) FTIR spectroscopy, chemical and histochemical characterisation of wood and lignin of five tropical timber wood species of the family of Dipterocarpaceae. Wood Sci Technol 44(2):225–242. doi:10.1007/s00226-009-0281-2

    Article  CAS  Google Scholar 

  • Revanappa SB, Nandini CD, Salimath PV (2010) Structural characterisation of pentosans from hemicellulose B of wheat varieties with varying chapati-making quality. Food Chem 119(1):27–33. doi:10.1016/j.foodchem.2009.04.064

    Article  CAS  Google Scholar 

  • Rhoads CA, Painter P, Given P (1987) FTIR studies of the contributions of plant polymers to coal formation. Int J Coal Geol 8(1–2):69–83. doi:10.1016/0166-5162(87)90023-1

    Article  CAS  Google Scholar 

  • Sekkal M, Dincq V, Legrand P, Huvenne J (1995) Investigation of the glycosidic linkages in several oligosaccharides using FT-IR and FT Raman spectroscopies. J Mol Struct 349(95):349–352

    Article  CAS  Google Scholar 

  • Shen JB, Lu HF, Peng QF, Zheng JF, Tian YM (2008) FTIR spectra of Camellia sect. Oleifera, sect. Paracamellia, and sect. Camellia (Theaceae) with reference to their taxonomic significance. J Syst Evol 46(2):194–204. doi:10.3724/SP.J.1002.2008.07125

    Google Scholar 

  • Silverstein RM, Webster FX, Kiemle D (2005) Spectrometric identification of organic compounds. Wiley, Hoboken, NJ, p 502

    Google Scholar 

  • Sjostrom E (1981) Wood chemistry: fundamentals and applications. Academic Press, New York, p 293

    Google Scholar 

  • Stewart D, Wilson HM, Hendra PJ, Morrison IM (1995) Fourier-transform infrared and Raman spectroscopic study of biochemical and chemical treatments of oak wood (Quercus rubra) and barley (Hordeum vulgare) straw. J Agric Food Chem 43(8):2219–2225. doi:10.1021/jf00056a047

    Article  CAS  Google Scholar 

  • Sudiyani Y, Tsujiyama S, Imamura Y, Takahashi M, Minato K, Kajita H, Sci W (1999) Chemical characteristics of surfaces of hardwood and softwood deteriorated by weathering. J Wood Sci 45(4):348–353

    Article  CAS  Google Scholar 

  • Takayama M (1997) Fourier transform Raman assignment of guaiacyl and syringyl marker bands for lignin determination. Spectrochim Acta A Mol Biomol Spectrosc 53(10):1621–1628. doi:10.1016/S1386-1425(97)00100-5

    Article  Google Scholar 

  • The Angiosperm Phylogeny Group (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc 161:105–121. doi:10.1111/j.1095-8339.2009.00996.x

    Article  Google Scholar 

  • Wang S, Wang K, Liu Q, Gu Y, Luo Z, Cen K, Fransson T (2009) Comparison of the pyrolysis behavior of lignins from different tree species. Biotechnol Adv 27(5):562–567. doi:10.1016/j.biotechadv.2009.04.010

    Article  CAS  Google Scholar 

  • Zugenmaier P (2007) Crystalline cellulose and derivatives: characterization and structures. Springer, Berlin, New York, p 285

    Google Scholar 

Download references

Acknowledgments

This work was supported by Europracticum IV (Leonardo da Vinci Programme). We gratefully acknowledge the Consello Social from Universidade de Santiago de Compostela (Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Gonzalez-Rodriguez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carballo-Meilán, A., Goodman, A.M., Baron, M.G. et al. Application of chemometric analysis to infrared spectroscopy for the identification of wood origin. Cellulose 23, 901–913 (2016). https://doi.org/10.1007/s10570-015-0848-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-015-0848-z

Keywords

Navigation