Skip to main content

Advertisement

Log in

The three-compartment microbial fuel cell: a new sustainable approach to bioelectricity generation from lignocellulosic biomass

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Herein, we report a new strategy for the simultaneous degradation of lignocellulosic biomass and bioelectricity generation using a novel three-chamber microbial fuel cell (MFC). Oscillatoria annae, a freshwater cyanobacterium, was used for the hydrolysis of cellulose to glucose. The electrocatalytic activity of the coculture of Acetobacter aceti and Gluconobacter roseus was used to oxidize the glucose for current generation in the MFC. Carbon felt was used as the anode and cathode material. Lignocellulosic materials such as sugarcane bagasse and corn cob were used as substrates. The performances of the MFC with two different substrates were analyzed by polarization studies, coulombic efficiency, percentage of COD removal and internal resistance. The three-chamber MFC produced a maximum power output of 8.78 W/m3 at 20.95 A/m3 and 6.73 W/m3 at 17.28 A/m3 with sugarcane bagasse and corn cob as substrates, respectively.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Baldrian P, Valaskova V (2008) Degradation of cellulose by basidiomycetous fungi. FEMS Microbiol Rev 32:501–521

    Article  CAS  Google Scholar 

  • Bhuvaneswari A, Krishnaraj RN, Berchmans S (2013) Metamorphosis of pathogen to electrigen at the electrode/electrolyte interface: direct electron transfer of Staphylococcus aureus leading to superior electrocatalytic activity. Electrochem Commun 34:25–28

    Article  CAS  Google Scholar 

  • Cayuela ML, Sánchez-Monedero MA, Roig A, Sinicco T, Mondini C (2012) Biochemical changes and GHG emissions during composting of lignocellulosic residues with different N-rich by-products. Chemosphere 88(2):196–203

    Article  CAS  Google Scholar 

  • Chen BY, Liu SQ, Hung JY, Shiau TJ, Wang JM (2013) Reduction of carbon dioxide emission by using microbial fuel cells during wastewater treatment. Aerosol Air Qual Res 13:266–274

    CAS  Google Scholar 

  • Cheng CL, Chang JS (2011) Hydrolysis of lignocellulosic feedstock by novel cellulases originating from Pseudomonas sp. CL3 for fermentative hydrogen production. Bioresour Technol 102:8628–8634

    Article  CAS  Google Scholar 

  • Elmekawy A, Diels L, De Wever H, Pant D (2013) Valorization of cereal based biorefinery by-products: reality and expectations. Environ Sci Technol 47(16):9014–9027

    Article  CAS  Google Scholar 

  • Elmekawy A, Srikanth S, Vanbroekhoven K, De Wever H, Pant D (2014) Bioelectro-catalytic valorization of dark fermentation effluents by acetate oxidizing bacteria in bioelectrochemical system (BES). J Power Sources 262:183–191

    Article  CAS  Google Scholar 

  • Fan Y, Sharbrough E, Liu H (2008) Quantification of the internal resistance distribution of microbial fuel cells. Environ Sci Technol 42:8101–8107

    Article  CAS  Google Scholar 

  • Heijne AT, Hamelers HVM, Wilde V, Rozendal RA, Buisman CJ (2006) A bipolar membrane combined with ferric iron reduction as an efficient cathode system in microbial fuel cells. Environ Sci Technol 40:5200–5205

    Article  Google Scholar 

  • Hesas RH, Ashri Wan Daud WM, Sahu JN, Arami-Niya A (2003) The effects of a microwave heating method on the production of activated carbon from agricultural waste: a review. J Anal Appl Pyrol 100:1–11

    Article  Google Scholar 

  • Horvath AL (2005) Solubility of structurally complicated materials: I. Wood 35:77–92

    Google Scholar 

  • Ieropoulos IA, Greenman J, Melhuish C, Horsfield I (2012) Microbial fuel cells for robotics: energy autonomy through artificial symbiosis. ChemSusChem 5:1020–1026

    Article  CAS  Google Scholar 

  • Karthikeyan R, Sheela B (2012) Simultaneous degradation of bad wine and electricity generation with the aid of the coexisting biocatalysts Acetobacter aceti and Gluconobacter roseus. Bioresour Technol 104:388–393

    Article  Google Scholar 

  • Karthikeyan R, Sathishkumar K, Murugesan M, Sheela B, Yegnaraman V (2009) Bioelectrocatalysis of Acetobacter aceti and Gluconobacter roseus for current generation. Environ Sci Technol 43:8684–8689

    Article  CAS  Google Scholar 

  • Karthikeyan R, Uskaikar HP, Berchmans S (2012) Electrochemically prepared manganese oxide as a cathode material for a microbial fuel cell. Anal Lett 45:1645–1657

    Article  CAS  Google Scholar 

  • Krishnaraj RN, Berchmans S, Pal P (2014) Symbiosis of photosynthetic microorganisms with non photosynthetic ones for the conversion of cellulosic mass into electrical energy and pigments. Cellulose 21:2349–2355

    Article  Google Scholar 

  • Kudanga T, Mwenje E (2005) Extracellular cellulase production by tropical isolates of Aureobasidium pullulans. Can J Microbiol 51:773–776

    Article  CAS  Google Scholar 

  • Lee SF, Forsberg CW, Gibbins LW (1985) Cellulolytic activity of Clostridium acetobutylicum. Appl Environ microbiol 50:220–228

    CAS  Google Scholar 

  • Logan BE, Rabaey K (2012) Converssion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science 337:686–690

  • Maeda K, Morioka R, Osada T (2009) Effect of covering composting piles with mature compost on ammonia emission and microbial community structure of composting process. J Environ Qual 38(2):598–606

    Article  CAS  Google Scholar 

  • Mahar RB, Liu J, Li H, Nie Y (2009) Bio-pretreatment of municipal solid waste prior to landfilling and its kinetics. Biodegradation 20:319–330

    Article  CAS  Google Scholar 

  • Martinez D, Berka RM, Henrissat B, Saloheimo M, Arvas M (2008) Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn Hypocrea jecorina). Nat Biotechnol 26:553–560

    Article  CAS  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686

    Article  CAS  Google Scholar 

  • Niu CG, Wang Y, Zhang XG, Zeng GM, Huang DW, Ruan M, Li XW (2012) Decolorization of an azo dye Orange G in microbial fuel cells using Fe(II)-EDTA catalyzed persulfate. Bioresour Technol 126:101–106

    Article  CAS  Google Scholar 

  • Pant D, Arslan D, Van Bogaert G, Gallego YA, De Wever H, Diels L, Vanbroekhoven K (2013) Integrated conversion of food waste diluted with sewage into volatile fatty acids through fermentation and electricity through a fuel cell. Environ Technol 34(13–16):1935–1945

    Article  CAS  Google Scholar 

  • Prabha DS, Karthikeyan K, Krishnaraj RN, Akila BM, Hemanth S, Harikrishnan R, Archunan G, Malliga P (2009) Effect of phenolic compounds released during degradation of Coir pith by Oscillatoria annae on Albino rat (Rattus norvegicus). J Appl Sci Environ Manage 13(4):87–90

    Google Scholar 

  • Rabaey K, Verstraete W (2005) Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol 23:291–298

    Article  CAS  Google Scholar 

  • Saha SK, Swaminathan P, Raghavan C, Uma L, Subramanian G (2010) Ligninolytic and antioxidative enzymes of a marine cyanobacterium Oscillatoria willei BDU 130511 during Poly R-478 decolourization. Bioresour Technol 101(9):3076–3084

    Article  CAS  Google Scholar 

  • Schröder U (2007) Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Phys Chem Chem Phys 9:2619–2629

    Article  Google Scholar 

  • Singh A, Sharma S (2005) Composting of a crop residue through treatment with microorganisms and subsequent vermicomposting. Bioresour Technol 85:107–111

    Article  Google Scholar 

  • Singh A, Pant D, Stig IO, Poonam SN (2012) Key issues to consider in microalgae based biodiesel production. Energy Educ Sci Technol Part A Energy Sci Res 29(1):563–576

    Google Scholar 

  • Trejo-Hernández MR, Ortiz A, Okoh AI, Morales D, Quintero R (2007) Biodegradation of heavy crude oil Maya using spent compost and sugar cane bagasse wastes. Chemosphere 68(5):848–855

    Article  Google Scholar 

  • Varalakshmi P (2007) Plant growth regulators from cyanobacteria. PhD thesis, submitted to Department of Marine Biotechnology, NFMC, Bharathidasan University, Tiruchirappalli-24, Tamilnadu, India

  • Viswajith V (2008) Potentials of Oscillatoria annae in producing bioethanol and plant growth regulator by the degradation of selected lignocellulosic, PhD dissertation, Bharathidasan University, Tiruchirappalli-24, Tamilnadu, India

  • Yang B, Wyman CE (2008) Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels Bioprod Bioref 2:26–40

    Article  CAS  Google Scholar 

  • Yang J, Zhou M, Zhao Y, Zhang C, Hu Y (2013) Electrosorption driven by microbial fuel cells to remove phenol without external power supply. Bioresour Technol 150:271–277

    Article  CAS  Google Scholar 

  • Yeber MC, Rodríguez J, Freer J, Durán N, Mansilla HD (2000) Photocatalytic degradation of cellulose bleaching effluent by supported TiO2 and ZnO. Chemosphere 41(8):1193–1197

    Article  CAS  Google Scholar 

  • You S, Zhao O, Zhang J, Jiang J, Zhao S (2006) A microbial fuel cell using permanganate as the cathodic electron acceptor. J Power Sources 162:1409–1415

    Article  CAS  Google Scholar 

  • Zhang F, Tian L, He Z (2011) Powering a wireless temperature sensor using sediment microbial fuel cells with vertical arrangement of electrodes. J Power Sources 196:9568–9573

    Article  CAS  Google Scholar 

  • Zhu G, Onodera T, Tandukar M, Pavlostathis SG (2013) Simultaneous carbon removal, denitrification and power generation in a membrane-less microbial fuel cell. Bioresour Technol 146:1–6

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheela Berchmans.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 30 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishnaraj, R.N., Berchmans, S. & Pal, P. The three-compartment microbial fuel cell: a new sustainable approach to bioelectricity generation from lignocellulosic biomass. Cellulose 22, 655–662 (2015). https://doi.org/10.1007/s10570-014-0463-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0463-4

Keywords

Navigation