Skip to main content

Advertisement

Log in

Biopolymers for surface engineering of paper-based products

  • Review Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The combination of biopolymer science and technology with surface engineering of paper-based cellulosic materials has a lot of potential in stepping forward to a sustainable future. Various biopolymers such as oxidized starch, carboxymethyl cellulose, and polylatic acid have been commercially used to engineer paper surface. The paper-based cellulosic products are widely used for printing/writing and packaging applications. However, the production of these products are currently dependent mainly upon the use of petroleum-based materials including synthetic pigment coating latexes and barrier coating materials. The major challenges associated with some biopolymers are their relatively high costs and unsatisfactory performances. Continuing efforts are being made to enable the increased and value-added use of various biopolymers in paper surface engineering. These polymers can be based on cellulose, hemicelluloses, chitosan, alginate, protein, polylactic acid, and polyhydroxyalkanoate. The biopolymer-engineered paper products can be tailored for use as substitutes for various non-renewable materials including plastics and metals as well. Future development in the area of biopolymers for paper surface engineering is likely to lead to new possibilities and breakthroughs, paving the way for a substantially sustainable and green future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdel-Maksoud G, Al-Saad Z (2009) Evaluation of cellulose acetate and chitosan used for the treatment of historical papers. Mediterr Archaeol Archaeom 9(1):69–87

    Google Scholar 

  • Al-Turaif H, Unertl WN, Lepoutre P (1995) Effect of pigmentation on the surface energy and surface chemistry of paper coating binders. J Adhes Sci Technol 9(7):801

    CAS  Google Scholar 

  • Andersson C (2008) New ways to enhance the functionality of paperboard by surface treatment—a review. Packag Technol Sci 21(6):339–373

    CAS  Google Scholar 

  • Arbatan T, Zhang L, Fang X-Y, Shen W (2012) Cellulose nanofibers as binder for fabrication of superhydrophobic paper. Chem Eng Sci 210:74–79

    CAS  Google Scholar 

  • Aspler J, Bouchard J, Berry R, Beck S, Drolet S, Zou X. (2013) Review of nanocellulosic products and their application. Chapter 20 in biopolymer nanocomposites. In: Dufresne A, Thomas S, Pothan LA (eds) Processing, properties, and applications. Wiley

  • Aulin C, Ström G (2013) Multilayered alkyd resin/nanocellulose coatings for use in renewable packaging solutions with a high level of moisture resistance. Ind Eng Chem Res 52(7):2582–2589

    CAS  Google Scholar 

  • Aulin C, Gällstedt M, Lindström T (2010) Oxygen and oil barrier properties of microfibrillated cellulose films and coatings. Cellulose 17(3):559–574

    CAS  Google Scholar 

  • Aulin C, Salazar-Alvarez G, Lindström T (2012) High strength, flexible and transparent nanofibrillated cellulose–nanoclay biohybrid films with tunable oxygen and water vapor permeability. Nanoscale 4:6622–6628

    CAS  Google Scholar 

  • Avena-Bustillos RJ, Krochta JM (1993) Water vapor permeability of caseinate-based edible films as affected by pH, calcium crosslinking and lipid content. J Food Sci 58(4):904–907

    CAS  Google Scholar 

  • Bajpai P (1999) Application of enzymes in the pulp and paper industry. Biotechnol Prog 15:147–157

    CAS  Google Scholar 

  • Bajpai P (2013) Biorefinery in the pulp and paper industry. Elsevier Inc., Amsterdam

    Google Scholar 

  • Bardet R, Belgacem MN, Bras J (2013) Different strategies for obtaining high opacity films of MFC with TiO2 pigments. Cellulose 20(6):3025–3037

    CAS  Google Scholar 

  • BeMiller J, Whistler R (2009) Starch: chemistry and technology, 3rd edn. Elsevier Inc., Amsterdam

    Google Scholar 

  • Bilodeau M (2012) Potential applications of nanofibrillated cellulose in printing and writing papers. TAPPI international conference on nanotechnology for renewable materials

  • Bindgard L, Gröndahl M, Danielsson M, Sternemalm E (2009) A sustainable barrier for packaging. TAPPI European PLACE conference

  • Bloembergen S (2011) Methods of using biobased latex binders for improved printing performance. World Intellectual Property Organization (WIPO). Patent application 2011084692 A1, 14 Jul 2011

  • Bloembergen S, McLennan I, Lee DI, Van Leeuwen J (2008) Paper binder performance with biobased nanoparticles. Paper 360° 3(8):46–48

    CAS  Google Scholar 

  • Bloembergen S, Vanegdom E, Wildi R, Mclennan IJ, Lee DI, Klass CP, Van Leeuwen J (2010a) Biolatex binders for paper and paperboard applications. J Pulp Pap Sci 36(3–4):151–161

    CAS  Google Scholar 

  • Bloembergen S, Lee DI, McLennan IJ, Wildi RH, Egdom EV (2010a) Process for producing biopolymer nanoparticle biolatex compositions having enhanced performance and compositions based thereon. United States Patent application 20100143738 A1, 10 Jun 2010

  • Bolivar AI, Venditti RA, Pawlak JJ, El-Tahlawy K (2007) Development and characterization of novel starch and alkyl ketene dimer microcellular foam particles. Carbohydr Polym 69:262–271

    CAS  Google Scholar 

  • Bordenave N, Grelier S, Coma V (2010) Hydrophobization and antimicrobial activity of chitosan and paper-based packaging material. Biomacromolecules 11(1):88–96

    CAS  Google Scholar 

  • Bourbonnais R, Marchessault RH (2010) Application of polyhydroxyalkanoate granules for sizing of paper. Biomacromolecules 11(4):989–993

    CAS  Google Scholar 

  • Brander J, Thorn I (1997) Surface application of paper chemicals. Blackie Academic and Professional, London

    Google Scholar 

  • Casettari L, Vllasaliu D, Castagnino E, Stolnik S, Howdle S, Illum L (2012) PEGylated chitosan derivatives: synthesis, characterizations and pharmaceutical applications. Prog Polym Sci 37(5):659–685

    CAS  Google Scholar 

  • Chan MA, Krochta JM (2001) Grease and oxygen barrier properties of whey protein isolate coated paperboard. TAPPI Solut 84(10):1–11

    Google Scholar 

  • Chen P, Yu H, Liu Y, Chen W, Wang X, Ouyang M (2013) Concentration effects on the isolation and dynamic rheological behavior of cellulose nanofibers via ultrasonic processing. Cellulose 20(1):149–157

    CAS  Google Scholar 

  • Deng Y, Ragauskas A (2012) Green nanocellulosic barriers. http://www.ipst.gatech.edu/meeting/2012/2012_presentations/17-Deng,%20Yulin%20--%20Nano%20Coating-2.pdf

  • Despond S, Espuche E, Cartier N, Domard A (2005) Barrier properties of paper-chitosan and paper-chitosan-carnauba wax films. J Appl Polym Sci 98(2):704–710

    CAS  Google Scholar 

  • Dimic-Misic K, Puisto A, Gane P, Nieminen K, Alava M, Paltakari J, Maloney T (2013) The role of MFC/NFC swelling in the rheological behavior and dewatering of high consistency furnishes. Cellulose 20(6):2847–2861

    CAS  Google Scholar 

  • Dulany MA, Batten GL Jr, Peck MC, Farley CE (2011) Papermaking additives. Kirk-Othmer Encycl Chem Technol. doi:10.1002/0471238961.1601160504211201.a01.pub2

    Google Scholar 

  • Duraiswamy C, Joyce MK, Fleming PD, Joyce TW (2001) Effect of starch type on the silicone holdout of release papers. Tappi J 84(3):50

    CAS  Google Scholar 

  • Eggink G, Northolt G (1999) Method for producing a biologically degradable polyhydroxyalkanoate coating with the aid of an aqueous dispersion of polyhydroxyalkanoate. United States patent 5958480, 28 Sep 1999

  • El-Tahlawy K, Venditti RA, Pawlak JJ (2007) Aspects of the preparation of starch microcellular foam particles crosslinked with glutaraldehyde using a solvent exchange technique. Carbohydr Polym 67(3):319–331

    CAS  Google Scholar 

  • Fatehi P (2013) Production of biofuels from cellulose of woody biomass. In: Kadla J (ed) Cellulose - biomass conversion. InTech. doi:10.5772/50740. Available from: http://www.intechopen.com/books/cellulose-biomass-conversion/production-of-biofuels-from-cellulose-of-woody-biomass

  • Fernandes SCM, Freire CSR, Silvestre AJD, Desbriéres J, Gandini A, Neto CP (2010) Production of coated papers with improved properties by using a water-soluble chitosan derivative. Ind Eng Chem Res 49(14):6432–6438

    CAS  Google Scholar 

  • Fertier L, Koleilat H, Stemmelen M, Giani O, Joly-Duhamel C, Lapinte V, Robin J-J (2013) The use of renewable feedstock in UV-curable materials—a new age for polymers and green chemistry. Prog Polym Sci 38(6):932–962

    CAS  Google Scholar 

  • Floyd WC, Thompson N, Dragner LR (2001) Paper making process utilizing a reactive cationic starch composition. United States patent 6303000, 16 Oct

  • Gällstedt M (2004) Films and composites based on chitosan, wheat gluten or whey proteins—their packaging related mechanical and barrier properties. PhD Thesis of the Royal Institute of Technology, Stockholm, Sweden

  • Gavhane YN, Gurav AS, Yadav AV (2013) Chitosan and its applications: a review of literature. Int J Res Pharma Biomed Sci 4(1):312–331

    Google Scholar 

  • Giezen FE, Jongboom ROJ, Feil H, Gotlieb KF, Boersma A (2004) Biopolymer nanoparticles. United States patent 6677386, 13 Jan

  • Glittenberg D, Becker A (1997) Cationic starches for surface sizing: the better solution. Paperi ja Puu/Paper and Timber 79(4):240–243

    CAS  Google Scholar 

  • Gong C, Hasan A, Bujanovic BM, Amidon TE (2012) Novel blend of biorenewable wet-end paper agents. Tappi J 11(1):41–48

    CAS  Google Scholar 

  • Grubb HB (2012) Renewable Xylan-based barrier coating for packaging. Paper conference and trade show

  • Guan L, Cao R, Tian J, McLiesh H, Garnier G, Shen W (2014) A preliminary study on the stabilization of blood typing antibodies sorbed into paper. Cellulose 21(1):717–727

    CAS  Google Scholar 

  • Hamada H, Bousfield WD (2010b) Nano-fibrillated cellulose as a coating agent to improve print quality of synthetic fiber sheets. TAPPI 11th advanced coating fundamentals symposium Munich, Germany

  • Hamada H, Beckvermit J, Bousfield DW (2010a) Nanofibrillated cellulose with fine clay as a coating agent to improve print quality. Paper conference and trade show, PaperCon, vol 1, pp 854–880

  • Ham-Pichavant F, Sèbe G, Pardon P, Coma V (2005) Fat resistance properties of chitosan-based paper packaging for food applications. Carbohydr Polym 61(3):259–265

    CAS  Google Scholar 

  • Han JH, Krochta JM (1999) Wetting properties and water vapor permeability of whey-protein-coated paper. Trans ASAE 42(5):1375–1382

    CAS  Google Scholar 

  • Han JH, Krochta JM (2001) Physical properties and oil absorption of whey-protein-coated paper. J Food Sci 66:294–299

    CAS  Google Scholar 

  • Helbling AM, Stollmaier FT, Annen TMS (2004) Use of starch dispersions as binder in coating compositions and process for preparing the starch dispersions. United States patent 6825252, 30 Nov

  • Holik H (ed) (2006) Handbook of paper and board. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  • Johansson A, Qvintus-leino P, Varjos P, Peltonen S, Mikkonen H, Miettinen M, Luukkanen S (2007) Porous filler or coating pigment of paper and cardboard and a method of manufacturing it. Patent application no. 20070163737. US Patent Office

  • Kane TG (1978) Polyvinyl alcohol/starch sizes can reduce pulp costs for fine paper. Pulp Paper 52(2):125

    CAS  Google Scholar 

  • Karvinen P, Oksman A, Silvennoinen R, Mikkonen H (2007) Complex refractive index of starch acetate used as a biodegradable pigment and filler of paper. Opt Mater 29:1171–1176

    CAS  Google Scholar 

  • Khwaldia K, Arab-Tehrany E, Desobry S (2010) Biopolymer coatings on paper packaging materials. Compr Rev Food Sci Food Saf 9(1):82–91

    CAS  Google Scholar 

  • Klass CP (2007) New nanoparticle laytex offers natural advantage. Paper 360° 2(1):30–31

    Google Scholar 

  • Klass CP (2011) Biobased materials for paper coating. PaperCon conference

  • Kochkar H, Morawietz M, Hölderich WF (2001) Oxidation of potato starch with NO2: characterization of the carboxylic acid salts. Appl Catal A Gen 210:325–328

    CAS  Google Scholar 

  • Koivunen K, Silenius P, Laine J, Vuorinen T (2007a) Method for dissolving cellulose and for producing cellulose particles. Patent application no. 2007/003699. World Intellectual Patent Organization

  • Koivunen K, Silenius P, Laine J, Vuorinen T (2007b) Method for coating cellulose particles, coated cellulose particles, and use thereof in paper and board production. Patent application no. 2007/003697. World Intellectual Patent Organization

  • Kuusipalo J, Kaunisto M, Laine A, Kellomäki M (2005) Chitosan as a coating additive in paper and paperboard. Tappi J 4(8):17–21

    CAS  Google Scholar 

  • Kuusisto-Rajala A, Knuutinen J, Lipponen J, Ljung M (2004) Control of the absorption two-sidedness of SC paper through chemical surface treatment. Pap Puu-Pap Tim 86(7):497–501

    CAS  Google Scholar 

  • Lahtinen K, Nättine K, Vartiainen J (2009) Influence of high-temperature heat treatment on barrier and functional properties of polyolefin-coated papers. Polym Plast Technol 48:561–569

    CAS  Google Scholar 

  • Laine C, Peltonen S, Hyvarinen S, Krogerus B, Mikkonen H, Pajari H, Vaha-Nissi M (2010) Novel dispersions and method for the production thereof. United States Patent Application 20100261807, 14 Oct

  • Laine C, Harlin A, Hartman G, Hyvarinen S, Kammiovirta K, Krogerus B, Pajari H, Rautkoski H, Setala H, Sievanen J, Uotila J, Vaha-Nissi M (2013) Hydroxyalkylated xylans—their synthesis and application in coatings for packaging and paper. Ind Crops Prod 44:692–704

    CAS  Google Scholar 

  • Laleg M (2001) Surface sizing with chitosan and chitosan blends, 87th annual meeting, PAPTAC, Montreal, C67

  • Laufmann M, Gisella U (2011) Surface filling of wood-free paper with natural ground calcium carbonate. Appita J 64(5):403–407, 411

    CAS  Google Scholar 

  • Lauzier CA, Monasterios CJ, Saracovan I, Marchessault RH, Ramsay BA (1993) Film formation and paper coating with poly (β-hydroxyalkanoate), a biodegradable latex. Tappi J 76(5):71–77

    CAS  Google Scholar 

  • Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose—its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90(2):735–764

    CAS  Google Scholar 

  • Laycock B, Halley P, Pratt S, Werker A, Lant P (2013) The chemomechanical properties of microbial polyhydroxyalkanoates. Prog Polym Sci 38(3–4):536–583

    CAS  Google Scholar 

  • Lee KY, Mooney D (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37(1):106–126

    CAS  Google Scholar 

  • Lee HL, Shin JY, Koh C-H, Ryu H, Lee D-J, Sohn C (2002) Surface sizing with cationic starch: its effect on paper quality and papermaking process. Tappi J 1(3):34–40

    CAS  Google Scholar 

  • Lee CK, Lee SB, Hwang SW, Park KW, Shim JK (2013) Cellulosic binder-assisted formation of graphene-paper electrode with flat surface and porous internal structure. J Nanosci Nanotechnol 13(11):7391–7395

    CAS  Google Scholar 

  • Lertsutthiwong P, Nazhad MM, Chandrkrachang S, Stevens WF (2004) Chitosan as a surface sizing agent for offset printing paper. Appita J 57(4):274–280

    CAS  Google Scholar 

  • Li H, Saeed A, Ni Y, van Heiningen ARP (2010) Hemicellulose removal from hardwood chips in the pre-hydrolysis step of the kraft-based dissolving pulp production process. J Wood Chem Technol 30(1):48–60

    CAS  Google Scholar 

  • Lim L-T, Auras R, Rubino M (2008) Processing technologies for poly(lactic acid). Prog Polym Sci 33(8):820–852

    CAS  Google Scholar 

  • Lin SY, Krochta JM (2003) Plasticizer effect on grease barrier and color properties of whey-protein coatings on paperboard. J Food Sci 68(1):229–233

    CAS  Google Scholar 

  • Liu S (2010) Woody biomass: niche position as a source of sustainable renewable chemicals and energy and kinetics of hot-water extraction/hydrolysis. Biotechnol Adv 28:563–582

    CAS  Google Scholar 

  • Liu Z, Fatehi P, Sadeghi S, Ni Y (2011) Application of hemicelluloses precipitated via ethanol treatment of pre-hydrolysis liquor in high-yield pulp. Bioresour Technol 102(20):9613–9618

    CAS  Google Scholar 

  • Liu W, Yuan Z, Mao C, Hou Q, Li K (2012) Extracting hemicelluloses prior to aspen chemi-thermomechanical pulping: effects of pre-extraction on pulp properties. Carbohydr Polym 87:322–327

    CAS  Google Scholar 

  • Ma J, Zhou G, Zhai H, Xiao H (2013) Effect of soy protein polymer on coating coverage and printing performance for coated paperboard. J For 3(1):38–44

    Google Scholar 

  • Mälkki Y, Lehtilä R (2012) Organic pigment and a method for its preparation. Patent application no. 2002144629. US Patent Office

  • Manjure S (2011) PLA for paper coating. Bioplast Mag 6:34–37

    Google Scholar 

  • Martins NCT, Freire CSR, Pinto RJB, Fernandes SCM, Neto CP, Silvestre AJD, Causio J, Baldi G, Sadocco P, Trindade T (2012) Electrostatic assembly of Ag nanoparticles onto nanofibrillated cellulose for antibacterial paper products. Cellulose 19(4):1425–1436

    CAS  Google Scholar 

  • Martins NCT, Freire CSR, Neto CP, Silvestre AJD, Causio J, Baldi G, Sadocco P, Trindade T (2013) Antibacterial paper based on composite coatings of nanofibrillated cellulose and ZnO. Colloid Surf A 417:111–119

    CAS  Google Scholar 

  • Mertaniemi H, Laukkanen A, Teirfolk J-E, Ikkala O, Ras RHA (2012) Functionalized porous microparticles of nanofibrillated cellulose for biomimetic hierarchically structured superhydrophobic surfaces. RSC Adv 2(7):2882–2886

    CAS  Google Scholar 

  • Mikkonen H, Miettinen M, Kataja K, Luukkanen S, Peltonen S, Qvintus-leino P (2007) Starch-based filler and coating pigment composition for fibre webs and method for the manufacture thereof. Patent application no. 2007/020327. World Intellectual Patent Organization

  • Mikula M, Trnovec B, Černáková L, Šutý Š, Jančovičová V (2009) Stabilization of paper by nitrogen plasma assisted application of chitosan at atmospheric pressure. Acta Chimica Slovaca 2(1):62–69

    Google Scholar 

  • Mishra AK (2005) Modified starches for enhanced paper quality and higher productivity. Pap Asia 21(1):30–33

  • Mukhopadhyay P, Mishra R, Rana D, Kundu PP (2012) Strategies for effective oral insulin delivery with modified chitosan nanoparticles: a review. Prog Polym Sci 37(11):1457–1475

    CAS  Google Scholar 

  • Oh JK, Lee DI, Park JM (2009) Biopolymer-based microgels/nanogels for drug delivery applications. Prog Polym Sci 34(12):1261–1282

    CAS  Google Scholar 

  • Pajari H, Rautkoski H, Moilanen P (2012) Replacement of synthetic binders with nanofibrillated cellulose in board coating: pilot scale studies. TAPPI international conference on nanotechnology for revenwable materials

  • Park HJ, Kim SH, Lim ST, Shin DH, Choi SY, Hwang KT (2000) Grease resistance and mechanical properties of isolated soy protein-coated paper. J Am Oil Chem Soc 77(3):269–273

    CAS  Google Scholar 

  • Parris N, Dickey LC, Wiles JL, Moreau RA, Cooke PH (2000) Enzymatic hydrolysis, grease permeation and water barrier properties of zein isolate coated paper. J Agric Food Chem 48(3):890–894

    CAS  Google Scholar 

  • Patel SV, Venditti RA, Pawlak JJ, Ayoub A, Rizvi SSH (2009) Development of cross-linked starch microcellular foam by solvent exchange and reactive supercritical fluid extrusion. J Appl Polym Sci 111:2917–2929

    CAS  Google Scholar 

  • Patel SV, Venditti RA, Pawlak JJ (2010) Dimensional changes of starch microcellular foam during the exchange of water with ethanol and subsequent drying. BioResources 5(1):121–134

    CAS  Google Scholar 

  • Peltonen S, Mikkonen H, Qvintus-leino P, Varjos P, Kataja K (2007) Pigment and filler and a method of manufacturing it. Patent application no. 20070101904. US Patent Office

  • Penttilä A, Lumme K, Kuutti L (2006) Light-scattering efficiency of starch acetate pigments as a function of size and packing density. Appl Opt 45(15):3501–3509

    Google Scholar 

  • Penttilä A, Sievänen J, Torvinen K, Ojanperä K, Ketoja JA (2013) Filler-nanocellulose substrate for printed electronics: experiments and model approach to structure and conductivity. Cellulose 20(3):1413–1424

    Google Scholar 

  • Perez D, Huber P, Petit-Conil M (2011) Extraction of hemicelluloses from wood chips and some examples of usage in the papermaking process. http://www.interfibres.com/fileadmin/user_upload/fichiers/sites/Interfibre/PDF/Interfibres2011_P_HUBER.pdf

  • Popil RE (2010) High stiffness surface coating optimization through starch encapsulation of platy kaolin. BioResources 5(4):2738–2750

    Google Scholar 

  • Prasad V, Shaikh AV, Kathe AA, Bisoyi DK, Verma AK, Vigneshwaran N (2010) Functional behaviour of paper coated with zinc oxide-soluble starch nanocomposites. J Mater Process Technol 210:1962–1967

    CAS  Google Scholar 

  • Rehm BHA (2010) Bacterial polymers: biosynthesis, modifications and applications. Nat Rev Microbiol 8:578–592

    CAS  Google Scholar 

  • Rhim JW, Kim JH (2009) Properties of poly(lactide)-coated paperboard for the use of 1-way paper cup. J Food Sci 74(2):E105–E111

    CAS  Google Scholar 

  • Rhim JW, Kim JH, Kim DH (2003) Modification of Na-alginate films by CaCl2 treatment. Korean J Food Sci Technol 35:217–221

    Google Scholar 

  • Rhim JW, Lee J-H, Hong S-I (2007) Increase in water resistance of paperboard by coating with poly(lactide). Packag Technol Sci 20(6):393–402

    CAS  Google Scholar 

  • Rhim J-W, Park H-M, Ha C-S (2013) Bio-nanocomposites for food packaging applications. Prog Polym Sci 38(10–11):1629–1652

    CAS  Google Scholar 

  • Richmond F, Co A, Bousfield D (2012) The coating of nanofibrillated cellulose onto paper using flooded and metered size press methods. Paper conference and trade show 2012: growing the future, PaperCon 2012—co-located with control systems 2012. United States, New Orleans, LA

  • Ridgway CJ, Gane PAC (2012) Constructing NFC-pigment composite surface treatment for enhanced paper stiffness and surface properties. Cellulose 19(2):547–560

    CAS  Google Scholar 

  • Ridgway CJ, Gane PAC (2013) Size-selective absorption and adsorption in anionic pigmented porous coating structures: case study cationic starch polymer versus nanofibrillated cellulose. Cellulose 20(2):933–951

    CAS  Google Scholar 

  • Saari J, Kataja K, Qvintus-Leino P, Kuuti L, Peltonen S, Mikkonen H, Joyce M (2005a) Trials with developed non-mineral starch based pigments and fillers. In Proceedings of the fillers and pigments for papermakers. Pira International, Atlanta

  • Saari J, Kataja K, Qvintus-Leino P, Kuuti L, Peltonen S, Mikkonen H, Joyce M (2005b) Coating trial results with non-mineral starch based pigments. Tappi coating conference. Toronto

  • Saeed A, Jahan MS, Li H, Liu Z, Ni Y, van Heiningen ARP (2012) Mass balance of hemicelluloses and other components in the pre-hydrolysis kraft-based dissolving pulp production process. Biomass Bioenergy 39:14–19

    CAS  Google Scholar 

  • Shen J, Fatehi P (2013) A review on use of lignocellulose-derived chemicals in wet-end application of papermaking. Curr Organ Chem 17(15):1647–1654

    CAS  Google Scholar 

  • Shen J, Qian X (2012) Application of fillers in cellulosic paper by surface filling: an interesting alternative or supplement to wet-end addition. BioResources 7(2):1385–1388

    CAS  Google Scholar 

  • Shen J, Song Z, Qian X (2010) Possible trends of renewable organic fillers and pigments derived from natural resources for sustainable development of paper industry. BioResources 5(1):5–7

    CAS  Google Scholar 

  • Shen J, Song Z, Qian X, Ni Y (2011a) A review on use of fillers in cellulosic paper for functional applications. Ind Eng Chem Res 50:661–666

    CAS  Google Scholar 

  • Shen J, Song Z, Qian X, Ni Y (2011b) Carbohydrate-based fillers and pigments for papermaking: a review. Carbohydr Polym 85(1):17–22

    CAS  Google Scholar 

  • Shen J, Fatehi P, Soleimani P, Ni Y (2012) Lime treatment of pre-hydrolysis liquor from the kraft-based dissolving pulp production process. Ind Eng Chem Res 51(2):662–667

    Google Scholar 

  • Shiah T-C (2009) Applying chitosan to increase the fungal resistance of paper-based cultural relics. Taiwan J For Sci 24(4):285–294

    CAS  Google Scholar 

  • Shin JY, Jones N, Lee DI, Fleming PD, Joyce MK, DeJong R, Bloembergen S (2012) Rheological properties of starch latex dispersions and starch latex-containing coating colors. Paper conference and trade show

  • Sone M, Matsunaga A (1992) Coating sheet. Japanese patent 4041289. Japanese Patent Office

  • Song H, Ankerfors M, Hoc M, Lindström T (2010) Reduction of the linting and dusting propensity of newspaper using starch and microfibrillated cellulose. Nord Pulp Pap Res J 26(4):495–504

    Google Scholar 

  • Sorrell S, Speirs J, Bentley R, Brandt A, Miller R (2010) Global oil depletion: a review of the evidence. Energy Policy 38:5290–5295

    Google Scholar 

  • Sousa MP, Mano JF (2013) Patterned superhydrophobic paper for microfluidic devices obtained by writing and printing. Cellulose 20(5):2185–2190

    CAS  Google Scholar 

  • Sriroth K, Sangseethong K (2009) Starch: An important component of the paper making process. Thai Tapioca Starch Association. http://www.thaitapiocastarch.org/article17.asp

  • Syverud K, Stenius P (2009) Strength and barrier properties of MFC films. Cellulose 16(1):75–85

    CAS  Google Scholar 

  • Talja R, Poppius-Levlin K (2011) Xylan from wood biorefinery—a novel approach. FlexPakRenew Workshop

  • Tanaka S, Kikuchi T (1967) CMC as a surface sizing agent. Jpn Tappi J 21(4):197–202

    CAS  Google Scholar 

  • Tang Y, Zhou D, Zhang J, Zhu X (2013) Fabrication and properties of paper coatings with the incorporation of nanoparticle pigments: rheological behavior. Dig J Nanomater Biostruct 8(4):1699–1710

    Google Scholar 

  • Tang Y, Yang S, Zhang N, Zhang J (2014) Preparation and characterization of nanocrystalline cellulose via low-intensity ultrasonic-assisted sulfuric acid hydrolysis. Cellulose 21(1):335–346

    CAS  Google Scholar 

  • Tharanathan RN (2005) Starch—value addition by modification. Crit Rev Food Sci 45:371–384

    CAS  Google Scholar 

  • Trezza TA, Vergano PJ (1994) Grease resistance of corn zein coated paper. J Food Sci 59(4):912–915

    Google Scholar 

  • Trezza TA, Vergano PJ (1995) Heat-sealing of corn zein coated paper shows promising potential. Packag Technol Eng 4:33–37

    Google Scholar 

  • Trezza TA, Wiles JL, Vergano PJ (1998) Water vapor and oxygen barrier properties of corn zein coated paper. Tappi J 81(8):171–176

    CAS  Google Scholar 

  • Vaha-Nissi M, Laine C, Talja R, Mikkonen H, Hyvarinen S, Harlin A (2010) Aqueous dispersions from biodegradable/renewable polymers. In: TAPPI PLACE conference. Albuquerque

  • van Heiningen ARP (2006) Converting a kraft pulp mill into an integrated forest biorefinery. Pulp Paper Canada 107:38–43

    Google Scholar 

  • van Leeuwen J (2006) Paper coating—SBR latex replacement technology. TAPPI coating and graphic arts conference. Atlanta, GA

  • Wang S, Zhang F, Chen F, Pang Z (2013) Preparation of a crosslinking cassava starch adhesive and its application in coating paper. BioResources 8(3):3574–3589

    Google Scholar 

  • Wildi RH, Egdob EV, Bloembergen S (2011) Process for producing biopolymer nanoparticles. United States patent application 20110042841 A1, 24 Feb

  • Yang X-W, Shen Y-D, Li P-Z, Huang F (2013) Study on the performance and of hydrophobic starch modified by ASA and its application as surface sizing agent. J Funct Mater 44(2):212–215

    CAS  Google Scholar 

  • Zhang YP, Chodavarapu VP, Kirk AG, Andrews MP (2012) Nanocrystalline cellulose for covert optical encryption. J Nanophotonics 6(1). Article number: 063516

  • Zheng G, Cui Y, Karabulut E, Wågberg L, Zhu H, Hu L (2013) Nanostructured paper for flexible energy and electronic devices. MRS Bull 38(4):320–325

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge support from Fundamental Research Funds (DL12CB08) for the Central Universities of China, National Natural Science Foundation of China (31100439), and Program for New Century Excellent Talents in University (NCET-12-0811) (China), NSERC Discovery and CRD grants (Canada), and Canada Research Chairs program of the Government of Canada.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Shen or Pedram Fatehi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, J., Fatehi, P. & Ni, Y. Biopolymers for surface engineering of paper-based products. Cellulose 21, 3145–3160 (2014). https://doi.org/10.1007/s10570-014-0380-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0380-6

Keywords

Navigation