Skip to main content
Log in

Surface modification of oxidized cellulose haemostat by argon plasma treatment

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

In this paper we focused on cold plasma treatment of oxidized cellulose haemostat. Oxidized cellulose was modified in inert argon plasma. The changes of surface composition were examined by XPS and FTIR. Surface morphology of fibres was studied by SEM. Gravimetry was used to study ablation and water absorption. Antibacterial effect of pristine and plasma treated samples was examined by growth of Escherichia coli and Staphylococcus epidermidis. Behaviour of pristine and plasma treated samples in water, physiological saline solution and phosphate buffered saline was observed by changes in the pH of their solutions. Modification of oxidized cellulose by inert argon plasma caused significant changes in the chemical composition of its surface layers as well as changes in morphology of those layers while maintaining or improving the antibacterial properties. We found out that modification by inert argon plasma improves the properties necessary for haemostatic function of oxidized cellulose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Bajerová M, Krejčová K, Rabišková M, Gajdziok J, Masteiková R (2009) Oxycellulose: significant characteristics in relation to its pharmaceutical and medical applications. Adv Polym Technol 28:199–208. doi:10.1002/adv.20161

    Article  Google Scholar 

  • Bauer AW, Kirby WM, Sherris JC, Turck M (1966) Antibiotic susceptibility testing by a standardized single disc method. Am J Clin Pathol 45:493–496

    CAS  Google Scholar 

  • Bazaka K, Jacob MV, Crawford RJ, Ivanova EP (2011) Plasma-assisted surface modification of organic biopolymers to prevent bacterial attachment. Acta Biomater 7:2015–2028. doi:10.1016/j.actbio.2010.12.024

    Article  CAS  Google Scholar 

  • Chan CM, Ko TM, Hiraoka H (1996) Polymer surface modification by plasmas and photons. Surf Sci Rep 24:1–54. doi:10.1016/0167-5729(96)80003-3

    Article  CAS  Google Scholar 

  • Chu PK, Chen JY, Wang LP, Huang N (2002) Plasma-surface modification of biomaterials. Mater Sci Eng, R 36:143–206. doi:10.1016/S0927-796X(02)00004-9

    Article  Google Scholar 

  • Dimitrijevich SD, Tatarko M, Gracy RW, Linsky CB, Chen C (1990a) Biodegradation of oxidized regenerated cellulose. Carbohydr Res 195:247–256. doi:10.1016/0008-6215(90)84169-U

    Article  CAS  Google Scholar 

  • Dimitrijevich SD, Tatarko M, Gracy RW, Wise GE, Oakford LX, Linsky CB, Kamp L (1990b) In vivo degradation of oxidized, regenerated cellulose. Carbohydr Res 198:331–341. doi:10.1016/0008-6215(90)84303-C

    Article  CAS  Google Scholar 

  • France RM, Short RD (1998) Plasma treatment of polymers: the effect of energy transfer from an argon plasma on the surface chemistry of polystyrene, and polypropylene. Langmuir 14:4827–4835. doi:10.1021/la9713053

    Article  CAS  Google Scholar 

  • Gustafsson I, Cars O, Andersson DI (2003) Fitness of antibiotic resistant Staphylococcus epidermidis assessed by competition on the skin of human volunteers. J Antimicrob Chemother 52:258–263. doi:10.1093/jac/dkg331

    Article  CAS  Google Scholar 

  • Hummel D, Scholl F (1969) Infrared analysis of polymers, resins, and additives: an atlas, vol. 1 Plastics, elastomers fibres and resins, part I: text. Wiley, New York pp 101, 111–114

  • Kang BS, Na YC, Jin YW (2012) Comparison of the wound healing effect of cellulose and gelatine: an in vivo study. Arch Plast Surg 39:317–321. doi:10.5999/aps.2012.39.4.317

    Article  Google Scholar 

  • Kolářová K, Vosmanská V, Rimpelová S, Švorčík V (2013) Effect of plasma treatment on cellulose fibre. Cellulose 20:953–961. doi:10.1007/s10570-013-9863-0

    Article  Google Scholar 

  • Křížová P, Mášová L, Suttnar J, Salaj P, Dyr JE, Homola J, Pecka M (2007) The influence of intrinsic coagulation pathway on blood platelets activation by oxidized cellulose. J Biomed Mater Res, Part A 82A:274–280. doi:10.1002/jbm.a.31060

    Article  Google Scholar 

  • Lewis KM, Spazierer D, Urban MD, Lin L, Redl H, Goppelt A (2013) Comparison of regenerated and non-regenerated oxidized cellulose hemostatic agents. Eur Sur 45:2013–2020. doi:10.1007/s10353-013-0222-z

    Google Scholar 

  • Macy JM, Farrad JR, Montgomery L (1982) Cellulolytic and non-cellulolytic bacteria in rat gastrintestinal tracts. Appl Environ Microbiol 44:1428–1434

    CAS  Google Scholar 

  • Moisan M, Barbeau J, Crevier MC, Pelletier J, Philip N, Saoudi B (2002) Plasma sterilization. Methods and mechanisms. Pure Appl Chem 74:349–358. doi:10.1351/pac200274030349

    Article  CAS  Google Scholar 

  • Moreira AJ, Mansano RD, De Pinto JA, Ruas JA, Ruas R, Zambon S, Da Silva VM, Verdonck PB (2004) Sterilization by oxygen plasma. Appl Surf Sci 235:151–155. doi:10.1016/j.apsusc.2004.05.128

    Article  CAS  Google Scholar 

  • Nithya E, Radhai R, Rajendran R, Shalinia S, Rajendran V, Jayakumar S (2010) Synergetic effect of DC air plasma and cellulase enzyme treatment on the hydrophilicity of cotton fabric. Carbohydr Polym 83:1652–1658. doi:10.1016/j.carbpol.2010.10.027

    Article  Google Scholar 

  • Pendharkar SM, Gorman AJ (2004) Hemostatic wound dressing containing aldehyde-modified polysaccharide and hemostatic agents. EP1424086

  • Socrates G (2004) Infrared and Raman characteristic group frequencies: tables and charts, 3rd edn. Wiley, New York

    Google Scholar 

  • Spangler D, Rothenburger S, Nguyen K, Jampani H, Weiss S, Bhende S (2004) In vitro antimicrobial activity of oxidized cellulose against antibiotic resistant microorganisms. Surg Infect 4:255–262. doi:10.1089/109629603322419599

    Article  Google Scholar 

  • Sun S, Suna J, Yao L, Qiu Y (2011) Wettability and sizing property improvement of raw cotton yarns treated with He/O2 atmospheric pressure plasma jet. Appl Surf Sci 257:2377–2382. doi:10.1016/j.apsusc.2010.09.106

    Article  CAS  Google Scholar 

  • Švorčík V, Hnatowicz V (2007) Properties of polymers modified by plasma discharge and ion beam. In: Albertov LB (ed) Polymer degradation and stability, 1st edn. Nova Sci Publ, New York, pp 171–216

    Google Scholar 

  • Švorčík V, Kolářová K, Slepička P, Macková A, Novotná M, Hnatowicz V (2006) Modification of surface properties of high and low density polyethylene by Ar plasma discharge. Polym Degrad Stab 91:1219–1225. doi:10.1016/j.polymdegradstab.2005.09.007

    Article  Google Scholar 

  • Švorčík V, Řezníčková A, Sajdl P, Kolská Z, Makajová Z, Slepička P (2011) Au nanoparticles grafted on plasma treated polymers. J Mater Sci 46:7917–7922. doi:10.1007/s10853-011-5920-y

    Article  Google Scholar 

  • Topalovic T, Nierstrasz AV, Bautista L, Jocic D, Navarro A, Wermoeskerken MCGM (2007) XPS and contact angle study of cotton surface oxidation by catalytic bleaching. Colloids Surf 76:85. doi:10.1016/j.colsurfa.2006.09.026

    Google Scholar 

  • Vaideki K, Jayakumar S, Rajendran R, Thilagavathi G (2007) Investigation on the effect of RF air plasma and neem leaf extract treatment on the surface modification and antimicrobial activity of cotton fabric. Appl Surf Sci 254:2472–2478. doi:10.1016/j.apsusc.2007.09.088

    Article  Google Scholar 

  • Yassen M, Pan F, Zhao X, Lu JR (2011) Surface modification to improve biocompatibility. In: Moo-Young M (ed) Comprehensive biotechnology, 2nd edn. Academic Press, Burlington, pp 65–81

    Chapter  Google Scholar 

  • Yasuko T (2005) Clinical benefits and risk analysis of topical hemostat: a review. J Artif Organs 8:137–142. doi:10.1007/s10047-005-0296-x

    Article  Google Scholar 

  • Zhu X, Chian SK, Chan-Park MBE, Lee ST (2005) Effect of argon plasma treatment on proliferation of human-skin-derived fibroblast on chitosan membrane in vitro. J Biomed Mater Res, Part A 73A:264–274. doi:10.1002/jbm.a.30211

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by GA CR under the project No. P108/12/1168.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimíra Vosmanska.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vosmanska, V., Kolarova, K., Rimpelova, S. et al. Surface modification of oxidized cellulose haemostat by argon plasma treatment. Cellulose 21, 2445–2456 (2014). https://doi.org/10.1007/s10570-014-0328-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0328-x

Keywords

Navigation