Skip to main content
Log in

Enzymatic phosphorylation of cellulose nanofibers to new highly-ions adsorbing, flame-retardant and hydroxyapatite-growth induced natural nanoparticles

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

This study confirms the enzyme-mediated phosphorylation of cellulose nanofibers (CNF) by using hexokinase and adenosine-5′-triphosphate in the presence of Mg-ions, resulting in a phosphate group’s creation predominantly at C-6-O positioned hydroxyl groups of cellulose monomer rings. A proof-of-concept is provided using 12C CPMAS, 31P MAS nuclear magnetic resonance, attenuated total reflectance-Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy (XPS) analyzing methods. The degree of substitution (DS) is determined by elemental analysis and compared to DS estimated by XPS analysis. From the thermal degradation measurements using thermo-gravimetric analysis, the C-6-O phosphorylation was found to noticeably prevent the CNF derivatives from weight loss in the pyrolysis process, thus, providing them flame-resistance functionality. Furthermore, phosphorylation significantly enhanced adsorption capacity of Fe3+ ions making them interesting for fabrication of biobased filters and membranes. Finally, the biomimetic growth of Ca–P crystals (hydroxyapatite) in simulated body fluid was characterized by scanning electron microscopy and energy dispersive X-ray, showing potential application as biomedical materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Amaral F, Granja PL, Barbosa MA (2005) Chemical modification of chitosan by phosphorylation: an XPS, FT-IR and SEM study. J Biomater Sci Polym Ed 16:1575–1593

    Article  CAS  Google Scholar 

  • Antonov L (2014) Tautomerism, methods and theories. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  • Aoki D, Nishio Y (2010) Phosphorylated cellulose propionate derivatives as thermoplastic flame resistant/retardant materials: influence of regioselective phosphorylation on their thermal degradation behaviour. Cellulose 17:963–976

    Article  CAS  Google Scholar 

  • Bachelard HS (1971) Allosteric activation of brain hexokinase by magnesium ions and by magnesium ion–adenosine triphosphate complex. Biochem J 125:249–254

    CAS  Google Scholar 

  • Bourbigot S, Le Bras M, Gengembre L, Delobel R (1994) XPS study of an intumescent coating application to the ammonium polyphosphate/pentaerythritol fire-retardant system. Appl Surf Sci 81:299–307

    Article  CAS  Google Scholar 

  • Cade-Menun BJ (2005) Characterizing phosphorus in environmental and agricultural samples by 31P nuclear magnetic resonance spectroscopy. Talanta 66:359–371

    Article  CAS  Google Scholar 

  • Ciolacu D, Kovac J, Kokol K (2010) The effect of the cellulose-binding domain from Clostridium cellulovorans on the supramolecular structure of cellulose fibers. Carbohydr Res 345:621–630

    Article  CAS  Google Scholar 

  • Coleman RJ, Lawrie G, Lambert LK, Whittaker M, Jack KS, Grøndahl L (2011) Phosphorylation of alginate: synthesis, characterization, and evaluation of in vitro mineralization capacity. Biomacromolecules 12:889–897

    Article  CAS  Google Scholar 

  • Garcia-Ubasart J, Vidal T, Torres AL, Rojas OJ (2013) Laccase-mediated coupling of nonpolar chains for the hydrophobization of lignocellulose. Biomacromolecules 14:1637–1644

    Article  CAS  Google Scholar 

  • Gérard C, Fontaine G, Bourbigot S (2010) New trends in reaction and resistance to fire of fire-retardant epoxies. Materials 3:4476–4499

    Article  Google Scholar 

  • Gospodinova N, Grelard A, Jeannin M, Chitanu GC, Carpov A, Thiéry V, Besson T (2002) Efficient solvent-free microwave phosphorylation of microcrystalline cellulose. Green Chem 4:220–222

    Article  CAS  Google Scholar 

  • Granja PL, Pouysegu L, Deffieux D, Daude G, De Jeso B, Labrugere C, Baquey C, Barbosa MAJ (2001) Cellulose phosphates as biomaterials. II. Surface chemical modification of regenerated cellulose hydrogels. Appl Polym Sci 82:3354–3365

    Article  CAS  Google Scholar 

  • Halonen H, Larsson PT, Iversen T (2013) Mercerized cellulose biocomposites: a study of influence of mercerization on cellulose supramolecular structure, water retention value and tensile properties. Cellulose 20:57–65

    Article  CAS  Google Scholar 

  • Heinze T, Liebert T, Heublein B, Hornig S (2006) Functional polymers base on dextran. Adv Polym Sci 205:199–291

    Article  CAS  Google Scholar 

  • Hutchens SA, Benson RS, Evans BR, O’eill HM, Rawn CJ (2006) Biomimetic synthesis of calcium-deficient hydroxyapatite in a natural hydrogel. Biomaterials 27:4661–4670

    Article  CAS  Google Scholar 

  • Jonoobi M, Mathew AP, Oksman K (2012) Producing low-cost cellulosenanofiber from sludge as new source of raw materials. Ind Crop Prod 40:232–238

    Article  CAS  Google Scholar 

  • Li K, Wang J, Liu X, Xiong X, Liu H (2012) Biomimetic growth of hydroxyapatite on phosphorylated electrospun cellulose nanofaibers. Carbohydr Polym 90:1573–1581

    Article  CAS  Google Scholar 

  • Li Q, McGinnis S, Sydnor C, Wong A, Renneckar S (2013) Nanocellulose life cycle assessment. ACS Sustain Chem Eng 1:919–928

    Article  CAS  Google Scholar 

  • Ma J, Sahai Y (2013) Chitosan biopolymer for fuel cell applications. Carbohydr Polym 92:955–975

    Article  CAS  Google Scholar 

  • Morrision JF, Heyde E (1972) Enzymatic phosphoryl group transfer. Annu Rev Biochem 41:29–54

    Article  Google Scholar 

  • Mucalo MR, Kato K, Yokogawa Y (2009) Phosphorylated, cellulose-based substrates as potential adsorbents for bone morphogenetic proteins in biomedical applications: a protein adsorption screening study using cytochrome C as a bone morphogenetic protein mimic. Colloids Surf B 71:52–58

    Article  CAS  Google Scholar 

  • Nehls I, Loth F (1991) 13C-NMR-spektroskopische Untersuchungen zur Phosphatierung von Celluloseprodukten im System H3PO4/Harnstoff. Acta Polym 42:233–235

    Article  CAS  Google Scholar 

  • Ogeda TL, Silva IB, Fidale LC, El Seoud OA, Petri DFS (2012) Effect of cellulose physical characteristics, especially the water sorption value, on the efficiency of its hydrolysis catalyzed by free or immobilized cellulose. J Biotechnol 157:246–252

    Article  CAS  Google Scholar 

  • Oshima T, Taguchi S, Ohe K, Baba Y (2011) Phosphorylated bacterial cellulose for adsorption of proteins. Carbohydr Polym 83:953–958

    Article  CAS  Google Scholar 

  • Park S, Johnson DK, Ishizawa CI, Parilla PA, Davis MF (2009) Measuring the crystallinity index of cellulose by solid state 13C nuclear magnetic resonance. Cellulose 16:641–647

    Article  CAS  Google Scholar 

  • Polnaya FJ, Marseno DW, Cahyanto MN (2013) Effects of phosphorylation and cross-linking on the pasting properties and molecular structure of sago starch. Int Food Res J 29:1609–1615

    Google Scholar 

  • Purich DL, Fromm HJ (1972) Activation of brain hexokinase by magnesium ions and by magnesium ion–adenosine triphosphate complex. Biochem J 130:63–69

    CAS  Google Scholar 

  • Suflet DM, Chitanu GC, Popa VI (2006) Phosphorylation of polysaccharides: new results on synthesis and characterisation of phosphorylated cellulose. React Funct Polym 66:1240–1249

    Article  CAS  Google Scholar 

  • Suflet DM, Chitanu GC, Desbrières J (2010) Phosphorylated polysaccharides. 2. Synthesis and properties of phosphorylated dextran. Carbohydr Polym 82:1271–1277

    Article  CAS  Google Scholar 

  • Tzanov T, Stamenova M, Cavaco-Paulo A (2002) Phosphorylation of cotton cellulose with Baker’s yeast hexokinase. Macromol Rapid Commun 23:962–964

    Article  CAS  Google Scholar 

  • Zeng C, Aleshin AE, Hardie JB, Harrison RW, Fromm HJ (1996) ATP-binding site of human brain hexokinase as studied by molecular modeling and site-directed mutagenesis. Biochemistry 35:13157–13164

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the European Commission under the NanoSelect project, Contract No. FP7-NMP4-SL-2012-280519. The authors are also grateful to Prof. Dr. Janez Plavec from the National Chemistry Institute and Prof. Dr. Janez Kovač from the Institute Jozef Stefan, both from Ljubljana, for the performance of NMR and XPS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mojca Božič.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Božič, M., Liu, P., Mathew, A.P. et al. Enzymatic phosphorylation of cellulose nanofibers to new highly-ions adsorbing, flame-retardant and hydroxyapatite-growth induced natural nanoparticles. Cellulose 21, 2713–2726 (2014). https://doi.org/10.1007/s10570-014-0281-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0281-8

Keywords

Navigation