Skip to main content
Log in

Mixed solvents for cellulose derivatization under homogeneous conditions: kinetic, spectroscopic, and theoretical studies on the acetylation of the biopolymer in binary mixtures of an ionic liquid and molecular solvents

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Rate constants for the acetylation of microcrystalline cellulose (MCC), by ethanoic anhydride in the presence of increasing concentrations of the ionic liquid (IL), 1-allyl-3-methylimidazolium chloride in dipolar aprotic solvents (DAS), N,N-dimethylacetamide (DMAC), and acetonitrile (MeCN), have been calculated from conductivity data. The third order rate constants showed a linear dependence on [IL]. We explain this result by assuming that the reacting cellulose is hydrogen-bonded to the IL. This is corroborated by kinetic data of the acetylation of cyclohexylmethanol, FTIR of the latter compound and of cellobiose in mixtures of IL/DAS, and conductivity of the binary solvent mixtures in absence, and presence of MCC. Cellulose acetylation is faster in IL/DMAC than in IL/MeCN; this difference is explained based on solvatochromic data (empirical polarity and basicity) and molecular dynamics simulations. Results of the latter indicate hydrogen-bond formation between the hydroxyl groups of the anhydroglucose unit of MCC, (Cl) of the IL, and the dipole of the DMAC. Under identical experimental conditions, acetylation in IL/DMAC is faster than that in LiCl/DMAC (2.7–8 times), due to differences in the enthalpies and entropies of activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ananikov VP (2011) Characterization of molecular systems and monitoring of chemical reactions in ionic liquids by nuclear magnetic resonance spectroscopy. Chem Rev 111:418–454

    Article  CAS  Google Scholar 

  • Anslyn EV, Dougherty DA (2006) Modern physical organic chemistry. University Science Books, Sausalito, p 382

    Google Scholar 

  • Armagero WLF, Chai CLL (2003) Purification of laboratory chemicals, 5th edn. Elsevier, New York

    Google Scholar 

  • Arvela PM, Anugwom I, Virtanen P, Sjöholma R, Mikkola JP (2010) Dissolution of lignocellulosic materials and its constituents using ionic liquids—a review. Ind Crops Prod 32:175–201

    Article  Google Scholar 

  • ASTM D1795-94 (2001) Standard test methods for intrinsic viscosity of cellulose

  • ASTM D871-96 (2002) Standard test methods of testing cellulose acetate (solution method; procedure A)

  • Bayly CI, Cieplak P, Cornell WD, Kollman PA (1993) A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J Phys Chem 97:10269–10280

    Article  CAS  Google Scholar 

  • Berry RS, Rice SA, Ross J (2000) Journal of Physics Chemistry. Oxford University Press, Oxford, p 524

    Google Scholar 

  • Bester-Rogac M, Stopp A, Johannes HJ, Hefter G, Buchner R (2011) Association of ionic liquids in solution: a combined dielectric and conductivity study of [bmim][Cl] in water and in acetonitrile. Phys Chem Chem Phys 13:17588–17598

    Article  CAS  Google Scholar 

  • Bruice TC (2006) Computational approaches: reaction trajectories, structures, and atomic motions. Enzyme reactions and proficiency. Chem Rev 106:3119–3139

    Article  CAS  Google Scholar 

  • Buschle-diller G, Zeronian SH (1992) Enhancing the reactivity and strength of cotton fibres. J Appl Polym Sci 45:967–979

    Article  CAS  Google Scholar 

  • Caleman C, van Maaren PJ, Hong M, Hub JS, Costa LT, Van der Spoel D (2012) Force field benchmark of organic liquids: density, enthalpy of vaporization, heat capacities, surface tension, isothermal compressibility, volumetric expansion coefficient, and dielectric constant. J Chem Theory Comput 8:61–74

    Google Scholar 

  • Catalán J (2009) Toward a generalized treatment of the solvent effect based on four empirical scales: dipolarity (SdP, a new scale), polarizability (SP), acidity (SA), and basicity (SB) of the medium. J Phys Chem B 113:5951–5960

    Article  Google Scholar 

  • Ciocirlan O, Croitoru O, Iulian O (2011) Densities for binary mixtures of 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid with molecular solvents. J Chem Eng Data 56:1526–1534

    Article  CAS  Google Scholar 

  • Crosthwaite JM, Aki SNVK, Maginn EJ, Brennecke JF (2005) Liquid phase behavior of imidazolium-based ionic liquids with alcohols: effects of hydrogen bonding and non-polar interactions. Fluid Phase Equilib 228–229:303–309

    Article  Google Scholar 

  • Dong K, Zhang SJ, Wang DX, Yao XQ (2006) Hydrogen bonds in imidazolium ionic liquids. J Phys Chem A 110:9775–9782

    Article  CAS  Google Scholar 

  • El Seoud OA (2007) Solvation in pure and mixed solvents: some recent developments. Pure Appl Chem 79:1135–1151

    Article  CAS  Google Scholar 

  • El Seoud OA (2009) Understanding solvation. Pure Appl Chem 81:697–707

    Article  CAS  Google Scholar 

  • El Seoud OA, Koschella A, Fidale LC, Dorn S, Heinze T (2007) Applications of ionic liquids in carbohydrate chemistry: a window of opportunities. Biomacromolecules 8:2629–2647

    Article  CAS  Google Scholar 

  • El Seoud OA, Nawaz H, Arêas EPG (2013) Chemistry and applications of polysaccharide solutions in strong electrolytes/dipolar aprotic solvents: an overview. Molecules 18:1270–1313

    Article  CAS  Google Scholar 

  • Fidale LC, Ruiz N, Heinze T, El Seoud OA (2008) Cellulose swelling by aprotic and protic solvents: what are the similarities and differences? Macromol Chem Phys 209:1240–1254

    Article  CAS  Google Scholar 

  • Fidale LC, Possidonio S, El Seoud OA (2009) Application of 1-allyl-3-(1-butyl) imidazolium chloride in the synthesis of cellulose esters: properties of the ionic liquid, and comparison with other solvents. Macromol Biosci 9:813–821

    Article  CAS  Google Scholar 

  • Gericke M, Liebert T, El Seoud OA, Heinze T (2011) Tailored media for homogeneous cellulose chemistry: ionic liquid/CO-solvent mixtures. Macromol Mater Eng 296:483–493

    Article  CAS  Google Scholar 

  • Gericke M, Fardim P, Heinze T (2012) Ionic liquids-promising but challenging solvents for homogeneous derivatization of cellulose. Molecules 17:7458–7502

    Article  Google Scholar 

  • Gomes TCF, Skaf MS (2012) Cellulose-builder: a toolkit for building crystalline structures of cellulose. J Comput Chem 33:1338–1346

    Article  CAS  Google Scholar 

  • Hanbin L, Kenneth L, Holmes BM, Simmons BA, Singh S (2010) Understanding the interactions of cellulose with ionic liquids: a molecular dynamics study. J Phys Chem B 114:4293–4301

    Article  Google Scholar 

  • Hauru LKJ, Hummel M, King AWT, Kilpeläinen I, Sixta H (2012) Role of solvent parameters in the regeneration of cellulose from ionic liquid solutions. Biomacromolecules 13:2896–2905

    Article  CAS  Google Scholar 

  • Hesse-Ertelt S, Heinze T, Kosan B, Schwikal K, Meister F (2010) Solvent effects on the NMR chemical shifts of imidazolium-based ionic liquids and cellulose therein. Macromol Symp 294-II:75–89

    Article  Google Scholar 

  • Humphrey W, Dalke A, Schulten K (1996) VMD—Visual molecular dynamics. J Mol Graphics 14:33–38

    Article  CAS  Google Scholar 

  • Jain RK, Agnish SL, Lal K, Bhatnagar HL (1985) Reactivity of hydroxyl groups in cellulose towards chloro(p-tolyl)methane. Makromol Chem 186:2501–2512

    Article  CAS  Google Scholar 

  • Jiang JC, Lin KH, Li SC, Pao-Ming SPM, Hung KC, Lin SH, Chang HC (2011) Association structures of ionic liquid/DMSO mixtures studied by high-pressure infrared spectroscopy. J Chem Phys 134:044506

    Article  Google Scholar 

  • Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118:11225–11236

    Article  CAS  Google Scholar 

  • Kwatra HS, Caruthers JM, Tao BY (1992) Synthesis of long chain fatty acids esterified onto cellulose via the vacuum-acid chloride process. Ind Eng Chem Res 31:2647–2651

    Article  CAS  Google Scholar 

  • Le KA, Sescousse R, Budtova T (2012) Influence of water on cellulose-EMIMAc solution properties: a viscometric study. Cellulose 19:45–54

    Article  CAS  Google Scholar 

  • Lide DR (2004) CRC Handbook of chemistry and physics, 85th edn. CRC Press, Boca Raton

    Google Scholar 

  • Makowska A, Dyoniziak E, Siporska A, Szydlowski J (2010) Miscibility of ionic liquids with polyhydric alcohols. J Phys Chem B 114:2504–2508

    Article  CAS  Google Scholar 

  • Malm CJ, Tanghe LO, Laird BC, Smith GD (1953) Relative rates of acetylation of the hydroxyl groups in cellulose acetate. J Am Chem Soc 75:80–84

    Article  CAS  Google Scholar 

  • Martínez L, Andrade R, Birgin EG, Martínez JM (2009) Packmol: a package for building initial configurations for molecular dynamics simulations. J Comput Chem 30:2157–2164

    Article  Google Scholar 

  • Nawaz H, Casarano R, El Seoud OA (2012) First report on the kinetics of the uncatalyzed esterification of cellulose under homogeneous reaction conditions: a rationale for the effect of carboxylic acid anhydride chain-length on the degree of biopolymer substitution. Cellulose 19:199–207

    Article  CAS  Google Scholar 

  • Nawaz H, Pires PAR, El Seoud OA (2013) Kinetics and mechanism of imidazole-catalyzed acylation of cellulose in LiCl/N, N-dimethylacetamide. Carbohydr Polym 92:997–1005

    Article  CAS  Google Scholar 

  • Neese F, Becker U, Ganiouchine D, Kobmann S, Petrenko T, Riplinger C (2011) Orca - an ab initio, DFT and semiempirical SCF-MO package (Version 2.9). Germany: University of Bonn

  • Perepelkin KE (2007) Lyocell fibers based on direct dissolution of cellulose in N-methylmorpholine N-oxide: development and prospects. Fiber Chem 39:163–172

    Article  CAS  Google Scholar 

  • Pinkert A, Marsh KN, Pang S, Staiger MP (2009) Ionic liquids and their interaction with cellulose. Chem Rev 109:6712–6728

    Article  CAS  Google Scholar 

  • Possidonio S, Fidale LC, El Seoud OA (2010) Microwave-assisted derivatization of cellulose in an ionic liquid: an efficient, expedient synthesis of simple and mixed carboxylic esters. J Polym Sci Part A Polym Chem 48:134–143

    Article  CAS  Google Scholar 

  • Press WH, Teukolsky SA, Vetterling WT, Flannergy BP (2007) Numerical recipes: the art of scientific computing, 3rd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Punyiczki M, Rosenberg A (1992) The effect of viscosity on the accessibility of the single tryptophan in human serum albumin. Biophys Chem 42:93–100

    Article  CAS  Google Scholar 

  • Sashina ES, Novoselov NP, Kuzmina OG, Troshenkova SV (2008) Ionic liquids as new solvents of natural polymers. Fibre Chem 40:270–277

    Article  CAS  Google Scholar 

  • Sato BM, Oliveira CG, Clarissa TM, El Seoud OA (2010) Thermo-solvatochromism in binary mixtures of water and ionic liquids: on the relative importance of solvophobic interactions. Phys Chem Chem Phys 12:1764–1771

    Article  CAS  Google Scholar 

  • Sato BM, Martins CT, El Seoud OA (2012) Solvation in aqueous binary mixtures: consequences of the hydrophobic character of the ionic liquids and the solvatochromic probes. New J Chem 2353–2360

  • Silva AWS, Vranken WF (2012) ACPYPE—AnteChamber PYthon Parser interfacE. BMC Res Notes 5:367

    Article  Google Scholar 

  • Sitnitsky AE (2008) Solvent viscosity dependence for enzymatic reactions. Physica A 387:5483–5497

    Article  CAS  Google Scholar 

  • Somogyi B, Norman JA, Zempel L, Rosenberg A (1988) Viscosity and transient solvent accessibility Trp-63 in the native confirmation of lysozyme. Biophys Chem 32:1–13

    Article  CAS  Google Scholar 

  • Tada EB, Novaki LP, El Seoud OA (2000) Solvatochromism in pure and binary solvent mixtures: effects of the molecular structure of the zwitterionic probe. J Phys Org Chem 13:679–687

    Article  CAS  Google Scholar 

  • Tosh B, Saikia CN, DASs NN (2000) Homogeneous esterification of cellulose in the lithium chloride-N, N-dimethylacetamide solvent system: effect of temperature and catalyst. Carbohydr Res 327:345–352

    Article  CAS  Google Scholar 

  • Van der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ (2005) GROMACS: fast, flexible and free. J Comput Chem 26:1701–1718

    Google Scholar 

  • Vanquelef E, Simon S, Marquant G, Garcia E, Klimerak G, Delepine JC (2011) R.E.D. Server: a web service for deriving RESP and ESP charges and building force field libraries for new molecules and molecular fragments. Nucleic Acids Res (Web server issue) 39:W511–W517

    Article  CAS  Google Scholar 

  • Wang J, Wang W, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174

    Article  CAS  Google Scholar 

  • Wang J, Wang W, Kollman PA, Case DA (2006) Automatic atom type and bond type perception in molecular mechanical calculations. J Mol Graph Model 25:247–260

    Article  Google Scholar 

Download references

Acknowledgments

We thank TWAS (The Academy of Sciences for the Developing World) and CNPq (National Council for Scientific and Technological Research) for a pre-doctoral fellowship to H. Nawaz, an undergraduate fellowship to T. A. Bioni, and a productivity fellowship to O. A. El Seoud, and FAPESP (São Paulo research Foundation) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar A. El Seoud.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 327 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nawaz, H., Pires, P.A.R., Bioni, T.A. et al. Mixed solvents for cellulose derivatization under homogeneous conditions: kinetic, spectroscopic, and theoretical studies on the acetylation of the biopolymer in binary mixtures of an ionic liquid and molecular solvents. Cellulose 21, 1193–1204 (2014). https://doi.org/10.1007/s10570-014-0184-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0184-8

Keywords

Navigation