Skip to main content
Log in

Vinylation of cellulose in superbase catalytic systems: towards new biodegradable polymer materials

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Diverse celluloses including non-mercerized and mercerized ones have been successfully vinylated with acetylene in the superbase catalytic systems MOH/DMSO and MOH/THF (M = Na, K) at 85–140 °C. Depending on the reaction conditions, degree of substitution of the hydroxyl groups by highly reactive polymerazable vinyloxy groups ranges 0.11–1.22, the yields of vinylated celluloses (insoluble in water, but soluble in DMSO) being 41–89 %. Vinylated celluloses are easily decomposed under the action of white rot fungi: Phanerochaete chrysosporium, Trametes versicolor and Trametes hirsutus, and can constitute a basis for the preparation of biodegradable polymer materials (due to polymerization or polyaddition at the vinyloxy group).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Scheme 3
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aboul-Seoud A (1968) Reaction of cellulose with methanolic sodium hydroxide. Faserforsch Textiltechn 19(5):228–230

    CAS  Google Scholar 

  • Aleksandrova GP, Petrov AN, Medvedeva SA, Babkin VA (1998) Screening of lignin-degrading fungi for biotechnological purposes. Appl Biochem Microbiol 34(3):270–275

    CAS  Google Scholar 

  • Baldrian P, Valaskova V (2008) Degradation of cellulose by basidiomycetous fungi. FEMS Microbiol Rev 32:501–521

    Article  CAS  Google Scholar 

  • Baumgartner S, Kristl J, Peppas NA (2002) Network structure of cellulose ethers used in pharmaceutical applications during swelling and at equilibrium. Pharm Res 19(8):1084–1090

    Article  CAS  Google Scholar 

  • Baumgartner S, Planinšek O, Srčič S, Kristl J (2006) Analysis of surface properties of cellulose ethers and drug release from their matrix tablets. Eur J Pharm Sci 27(4):375–383

    Article  Google Scholar 

  • Berry JW, Tucker H, Deutschman AJ, Evans JP (1966) Cellulose vinylation. Determination of optimal condition by response surface designs. Ind Eng Chem Process Design Dev 5(2):165–166

    Article  CAS  Google Scholar 

  • Chambin O, Champion D, Debray C, Rochat-Conthier MH, Le Meste M, Pourcelot Y (2004) Effects of different cellulose derivatives on drug release mechanism studied at a preformulation stage. J Control Release 95(1):101–108

    Article  CAS  Google Scholar 

  • Chiddix M, Glickman J, Hecht O (1965a) Vinylated cotton. I. Vinylation of cotton slivers and print cloth. Text Res J 35(10):942–950

    Article  CAS  Google Scholar 

  • Chiddix M, Dunkan J, Fredericks G, Glickman J, Hecht O (1965b) Vinylated cotton. II. Preliminary examination of physical and textile properties. Text Res J 35(11):965–972

    Article  CAS  Google Scholar 

  • Favorsky AE, Ivanov VI, Kuznetsova ZI (1941) Cellulose vinyl ethers. Dokl Akad Nauk SSSR 32(9):630–632

    Google Scholar 

  • Fox SC, Li B, Xu D, Edgar KJ (2011) Regioselective esterification and etherification of cellulose: a review. Biomacromolecules 12:1956–1972

    Article  CAS  Google Scholar 

  • Hallac BB, Ragauskas AJ (2011) Analyzing cellulose degree of polymerization and its relevancy to cellulosic ethanol. Biofuels Bioprod Bioref 5:215–225

    Article  CAS  Google Scholar 

  • Hecht OF, Glickman SA, Duncan JJ, Chiddix ME (1970) Process for preparing partially vinylated fibrous cotton cellulose and resulting products. US Patent 3536441

  • Heinze T, Liebert T, Pfeiffer KS, Hussain MA (2003) Unconventional cellulose esters: synthesis, characterization and structure-property relations. Cellulose 10:283–296

    Article  CAS  Google Scholar 

  • Heinze T, Liebert T, Koschella A (2006) Esterification of polysaccarides. Springer, Berlin

    Google Scholar 

  • Hoenich N (2006) Cellulose for medical applications: past, present, and future. Bioresource 1(2):270–280

    Google Scholar 

  • Huang C, Soenen SJ, van Gulck E, Vanham G, Rejman J, Van Calenbergh S, Vervaet C, De Smedt SC (2012) Electrospun cellulose acetate phthalate fibers for semen induced anti-HIV vaginal drug delivery. Biomaterials 33:962–969

    Article  CAS  Google Scholar 

  • Kalabin GA, Trofimov BA, Bzhezovsky VM, Kushnarev DF, Amosova SV, Gusarova NK, Alpert ML (1975) 13C NMR spectra and conjugation effects in alkoxy- and alkylthioethylenes. Russ Chem Bull 24(3):501–505

    Google Scholar 

  • Kamide K (2005) Cellulose and cellulose derivatives: molecular characterization and its application. Elsevier, Amsterdam-Boston

    Google Scholar 

  • Klemm D, Heublein B, Fink H-P, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393

    Article  CAS  Google Scholar 

  • Obolenskaya AV, El’nitskaya ZP, Leonovich AA (1991) Laboratory works on wood and cellulose chemistry. Ecologiya, Moscow

    Google Scholar 

  • O’Connell DW, Birkinshaw C, O’Dwyer TF (2008) Heavy metal adsorbents prepared from the modification of cellulose: a review. Bioresour Technol 99(15):6709–6724

    Article  Google Scholar 

  • Peydecastaing J, Girardeau S, Vaca-Garcia C, Borredon ME (2005) Long chain cellulose esters with very low DS obtained with non-acidic catalysts. Cellulose 13:95–103

    Article  Google Scholar 

  • Puls J, Wilson SA, Hölter D (2011) Degradation of cellulose acetate-based materials: a review. J Polym Environ 19(1):152–165

    Article  CAS  Google Scholar 

  • Saritha V, Maruthi YA (2010) Soil fungi: potential micoremediators of lignocellulosic waste. Bioresources 5(2):920–927

    CAS  Google Scholar 

  • Schilling M, Bouchard M, Khanjian H, Learner T, Phenix A, Rivens R (2010) Application of chemical and thermal analysis methods for studying cellulose ester plastics. Acc Chem Res 43(6):888–896

    Article  CAS  Google Scholar 

  • Shostakovsky MF (1952) Vinyl ethers. Acad. Sci. USSR Press, Moscow

    Google Scholar 

  • Shostakovsky MF, Prilezhaeva EN, Tsymbal LV (1954) Synthesis and transformations of vinyl ethers of highest polyatomic alcohols and cellulose. Tetravinyl ether of α-methylglucoside. Dokl Akad Nauk USSR 96(1):99–102

    Google Scholar 

  • Shostakovsky MF, Prilezhaeva EN, Tsymbal LV (1956) Synthesis and transformations of vinyl ethers of highest polyatomic alcohols and cellulose. II. Cellulose-based vinyl ethers. Zh Obshch Khim 26(3):739–745

    Google Scholar 

  • Shostakovsky MF, Polyakov AI, Smagin VV, Lavrova KF, Vasil’eva LV (1968) Mixed cellulose derivatives. USSR Patent 229483

  • Shtishevsky VV, Obolonskaya NA, Nikitin NI (1951) Vinylation of cellulose. Zh Prikl Khim 24(10):1045–1051

    Google Scholar 

  • Siggia S, Edsberg RL (1948) Iodometric determination of vinyl alkyl ethers. Anal Chem 20(8):762–763

    Article  CAS  Google Scholar 

  • Sinegovskaya LM, Keiko VV, Trofimov BA (1987) Rotational isomerism of vinyl ethers and sulfides. Sulfur Rep 7(5):337–378

    Article  CAS  Google Scholar 

  • Träskman B, Tammela V (1986) The preparation and properties of vinyl cellulose. J Appl Polym Sci 31(7):2043–2054

    Article  Google Scholar 

  • Trofimov BA (1981) Heteroatom derivatives of acetylene. New polyfunctional monomers, reagents and semiproducts. Nauka, Moscow

    Google Scholar 

  • Trofimov BA (2002) Acetylene and its derivatives in reactions with nucleophiles: recent advances and current trends. Curr Org Chem 6:1121–1162

    Article  CAS  Google Scholar 

  • Trofimov BA (2004) Superbase catalysts and reagent: the concept, application, perspectives. In: Potekhin AA, Kostikov RR, Baird MS (eds) Modern problems of organic chemistry, vol 14. VVM, St.-Peterburg, pp 121–163

    Google Scholar 

  • Trofimov BA, Gusarova NK (2007) Acetylene: new prospects of classical reactions. Russ Chem Rev 76(6):507–527

    Article  CAS  Google Scholar 

  • Trofimov BA, Oparina LA, Krivdin LB, Gusarova NK, Chernyshev KA, Sinegovskaya LM, Klyba LV, Parshina LN, Tantsyrev AP, Kazheva ON, Alexandrov GG, D’yachenko OA (2006) Structural study of 2, 3, 4, 6-tetra(O-vinyl)methyl-α-D-glucopyranoside. J Mol Struct 791(1–3):1–9

    Article  CAS  Google Scholar 

  • Trofimov BA, Parshina LN, Oparina LA, Tantsyrev AP, Khil’ko MY, Vysotskaya OV, Stepanov AV, Gusarova NK, Henkelmann J (2007) Direct vinylation of glucose derivatives with acetylene. Tetrahedron 63(47):11661–11665

    Google Scholar 

  • Ushakov SN, Geller IM (1940) Mixed cellulose ethyl vinyl ether. USSR Author’s Certificate 63682

  • Wertz J-L, Bédué O, Mercier JP (2010) Cellulose science and technology. EPFL Press, Lausanne

    Google Scholar 

Download references

Acknowledgments

This work was supported by the President of the Russian Federation (program for the support of leading scientific schools, grant no. NSh-3230.2010.3) and Ministry for Education and Science of the Russian Federation (State contract no. 14.740.11.0378). Financial support from BASF (Germany) is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris A. Trofimov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trofimov, B.A., Oparina, L.A., Parshina, L.N. et al. Vinylation of cellulose in superbase catalytic systems: towards new biodegradable polymer materials. Cellulose 20, 1201–1214 (2013). https://doi.org/10.1007/s10570-013-9890-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-013-9890-x

Keywords

Navigation