Skip to main content

Advertisement

Log in

Nanoscale microfibrillated cellulose reinforced truly-solid polymer electrolytes for flexible, safe and sustainable lithium-based batteries

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Fully-solid methacrylic-based thermo-set polymer electrolyte membranes reinforced with nanoscale micro-fibrillated cellulose (MFC) fibres are here presented. The preparation is carried out in water and the membrane is obtained by an easy and reliable UV-induced polymerisation via a free radical mechanism; thus, the overall process is highly energy efficient and environmentally friendly. The morphology of the composite electrolytes as well as the mapping of the elements present in the system is investigated by scanning electron microscopy, while the thermal behaviour is investigated by thermo-gravimetric analysis and differential scanning calorimetry. The composite polymer electrolytes prepared by MFC fibres reinforcement exhibit excellent mechanical properties with a Young’s modulus as high as 32 MPa. Acceptable ionic conductivity values (above 0.1 mS cm−1 at 50 °C) and good overall electrochemical performances are maintained, ensuring that such specific approach would make these hybrid organic, cellulose-based composite polymer electrolyte systems a strong contender in the field of thin and flexible fully-solid lithium based power sources, especially for moderately high temperature applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alloin F, D’Aprea A et al (2010) Nanocomposite polymer electrolyte based on whisker or microfibrils polyoxyethylene nanocomposites. Electrochim Acta 55(18):5186–5194

    Article  CAS  Google Scholar 

  • Armand MB, Chabagno SM, Duclot M (1978) Extended abstracts. Second international meeting on solid electrolytes. St. Andrews, Scotland

    Google Scholar 

  • Azizi Samir MAS, Alloin F et al (2004) Preparation of cellulose whiskers reinforced nanocomposites from an organic medium suspension. Macromolecules 37(4):1386–1393

    Article  Google Scholar 

  • Azizi Samir MAS, Alloin F et al (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6(2):612–626

    Article  Google Scholar 

  • Brown EE, Laborie M-PG (2007) Bioengineering bacterial cellulose/poly(ethylene oxide) nanocomposites. Biomacromolecules 8(10):3074–3081

    Article  CAS  Google Scholar 

  • Bruce DM, Hobson RN et al (2005) High-performance composites from low-cost plant primary cell walls. Compos Part A Appl Sci and Manuf 36(11):1486–1493

    Article  Google Scholar 

  • Chiappone A, Nair JR et al (2011) Microfibrillated cellulose as reinforcement for Li-ion battery polymer electrolytes with excellent mechanical stability. J Power Sources 196(23):10280–10288

    Article  CAS  Google Scholar 

  • Croce F, Appetecchi GB et al (1998) Nanocomposite polymer electrolytes for lithium batteries. Nature 3946692:456–458

    Google Scholar 

  • Dias FB, Plomp L et al (2000) Trends in polymer electrolytes for secondary lithium batteries. J Power Sources 88(2):169–191

    Article  CAS  Google Scholar 

  • Fergus JW (2010) Recent developments in cathode materials for lithium ion batteries. J Power Sources 195(4):939–954

    Article  CAS  Google Scholar 

  • Fouassier JP (1995) Photoinitiation, photopolymerization, and photocuring fundamentals and applications. Hanser Publishers, New York

    Google Scholar 

  • Fulcher GS (1925) Analysis of recent measurements of the viscosity of glasses. J Am Ceramic Soc 8(6):339–355

    Article  CAS  Google Scholar 

  • Gerbaldi C, Nair JR et al (2009) Highly ionic conducting methacrylic-based gel-polymer electrolytes by UV-curing technique. J Appl Electrochem 39(11):2199–2207

    Article  CAS  Google Scholar 

  • Herrick FW, Casebier RL, et al. (1983) Microfibrillated cellulose: morphology and accessibility. In: Sarko A (ed.) Proceedings of the ninth cellulose conference. Applied polymer symposia, 37. Wiley, New York City, pp 797–813

  • Jabbour L, Destro M et al (2012) Aqueous processing of cellulose based paper-anodes for flexible Li-ion batteries. J Mat Chem 22(7):3227–3233

    Article  CAS  Google Scholar 

  • Jabbour L, Bongiovanni R, Chaussy D, Gerbaldi C, Beneventi D (2013) Cellulose-based Li-ion batteries: a review. Cellulose. doi:10.1007/s10570-013-9973-8

  • Janardhnan S, Sain MM (2006) Isolation of cellulose microfibrils: an enzymatic approach. BioResources 1(2):176–188

    Google Scholar 

  • Kim YW, Lee W et al (2000) Relation between glass transition and melting of PEO–salt complexes. Electrochim Acta 45(8–9):1473–1477

    Article  CAS  Google Scholar 

  • Krawiec W, Scanlon L G, Fellner J-P, Vaia R A, Vasudevan S, Giannelis E P, (1995) Polymer nanocomposites: a new strategy for synthesizing solid electrolytes for rechargeable lithium batteries. J Power Sources 54:310–315

    Google Scholar 

  • López-Rubio A, Lagaron JM et al (2007) Enhanced film forming and film properties of amylopectin using micro-fibrillated cellulose. Carbohydr Pol 68(4):718–727

    Article  Google Scholar 

  • Lu J, Wang T et al (2008) Preparation and properties of microfibrillated cellulose polyvinyl alcohol composite materials. Compos A Appl Sci Manuf 39(5):738–746

    Article  Google Scholar 

  • Meligrana G, Gerbaldi C et al (2006) Hydrothermal synthesis of high surface LiFePO4 powders as cathode for Li-ion cells. J Power Sources 160(1):516–522

    Article  CAS  Google Scholar 

  • Murata K, Izuchi S et al (2000) An overview of the research and development of solid polymer electrolyte batteries. Electrochim Acta 45(8–9):1501–1508

    Article  CAS  Google Scholar 

  • Nair JR, Gerbaldi C et al (2008) UV-cured methacrylic membranes as novel gel–polymer electrolyte for Li-ion batteries. J Power Sources 178(2):751–757

    Article  CAS  Google Scholar 

  • Nair JR, Chiappone A et al (2011a) Novel cellulose reinforcement for polymer electrolyte membranes with outstanding mechanical properties. Electrochim Acta 57:104–111

    Article  CAS  Google Scholar 

  • Nair JR, Gerbaldi C et al (2011b) Methacrylic-based solid polymer electrolyte membranes for lithium-based batteries by a rapid UV-curing process. React Func Pol 71(4):409–416

    Article  CAS  Google Scholar 

  • Oza KP, Frank SG (1986) Microcrystalline cellulose stabilized emulsions. J Dispersion Sci Technol 7:543–561

    Article  CAS  Google Scholar 

  • Özgür Seydibeyoğlu M, Oksman K (2008) Novel nanocomposites based on polyurethane and micro fibrillated cellulose. Compos Sci Technol 68(3–4):908–914

    Article  Google Scholar 

  • Scrosati B, Garche J (2010) Lithium batteries: status, prospects and future. J Power Sources 195(9):2419–2430

    Article  CAS  Google Scholar 

  • Shin JH, Henderson WA et al (2006) Solid-state Li/LiFePO4 polymer electrolyte batteries incorporating an ionic liquid cycled at 40 °C. J Power Sources 156(2):560–566

    Article  CAS  Google Scholar 

  • Siqueira G, Bras J et al (2008) Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 10(2):425–432

    Article  Google Scholar 

  • Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459–494

    Article  Google Scholar 

  • Tammann G, Hesse W (1926) Die Abhängigkeit der Viscosität von der Temperatur bie unterkühlten Flüssigkeiten. Zeitschrift für anorganische und allgemeine Chemie 156(1):245–257

    Article  Google Scholar 

  • Turbak A F, Snyder F W et al. (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. In: Sarko A (ed) Proceedings of the ninth cellulose conference. Applied polymer symposia, 37. Wiley, New York City, pp 815–827

  • Vogel H (1921) The law of the relationship between viscosity of liquids and the temperature. Phys Z 22:645–649

    Google Scholar 

  • Wright PV (1975) Electrical conductivity in ionic complexes of poly(ethylene oxide). Br Polym J 7(5):319–327

    Article  CAS  Google Scholar 

  • Yang J, Eitouni H, Singh M (2011) High temperature lithium cells with solid polymer electrolytes. US.Patent WO/2011/146670 PCT/US2011/037072

Download references

Acknowledgments

The authors kindly acknowledge Lara Jabbour (INPG Pagora) for her collaboration with SEM-EDX analysis and Davide Beneventi for his supervision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Gerbaldi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiappone, A., Nair, J.R., Gerbaldi, C. et al. Nanoscale microfibrillated cellulose reinforced truly-solid polymer electrolytes for flexible, safe and sustainable lithium-based batteries. Cellulose 20, 2439–2449 (2013). https://doi.org/10.1007/s10570-013-0002-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-013-0002-8

Keywords

Navigation