Skip to main content
Log in

Lignin selective dyes: quantum-mechanical study of their characteristics

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The mechanism of dye-bonding to the lignin component of the fibre was checked using the quantum-mechanical and crystallographic approach. The calculated data support the conclusion that for the selectivity of cationic dyes for lignin, a high partial negative charge on accessible substituents on the periphery of the molecule is the most important, but not an exclusive factor. Besides the delocalized positive charge, what is also important for the interaction of a dye with hemicellulose, is the dye’s ability to be involved in hydrogen bonds, whereas for the interaction with lignin also its ability of stacking to it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adhikesavalu DN, Mastropaolo D, Camerman A, Camerman N (2001) Two rhodamine derivatives: 9-[2-(ethoxycarbonyl)phenyl]-3, 6-bis-(ethylamino)-2, 7-dimethylxanthylium chloride monohydrate and 3, 6-diamino-9-[2-(methoxycarbonyl)-phenyl]xanthylium chloride trihydrate. Acta Crystallogr Sect C Cryst Struct Commun 57:657–659

    Article  CAS  Google Scholar 

  • Aggarwal A, Islam SA, Kuroda R, Neidle S (1984) X-ray crystallographic analysis of a ternary intercalation complex between proflavine and the dinucleoside monophosphates CpA and UpG. Biopolymers 23:1025–1041

    Article  CAS  Google Scholar 

  • Ara I, El Bahij F (2004) Synthesis and crystal structure of a zinc tris(xanthate) anionic derivative with a diaminoacridine cation. Inorg Chem Commun 7:1091–1094

    Article  CAS  Google Scholar 

  • Cambridge Structural Database, April 2008 release

  • Chen PC, Chieh YC (2003) Azobenzene and stilbene: a computational study. J Mol Struct (Theochem) 624:191–200

    Article  CAS  Google Scholar 

  • Chen PC, Chieh YC, Wu JC (2005) Theoretical study of the electronic spectra of azobenzene dyes. J Mol Struct (Theochem) 715:183–189

    Article  CAS  Google Scholar 

  • Colour index (1971) Colour index, 3rd ed. The Society of Dyers and Colourists, Bradford, England, American Association of Textile Chemists and Colourists, NC

  • Diamantis AA, Manikas M, Salam MA, Tiekink ERT (1992) Crystal structure of ortho-hydroxybenzeneazo-beta-naphthol, C16H12N2O2. Z Kristallogr 202:154–156

    Article  CAS  Google Scholar 

  • Drnovšek T, Perdih A (2005a) Selective staining as a tool for wood fibre characterization. Dyes Pigments 67:197–206

    Article  Google Scholar 

  • Drnovšek T, Perdih A (2005b) Changes on fibre surface during prebleaching comparing different chlorine-free delignification agents. Wood Fibre Sci 37(1):75–82

    Google Scholar 

  • Drnovšek T, Perdih A (2005c) Fiber surface characteristics determined by the method of selective staining, ESCA measurements and charge determination. Wood Res [Bratislava] 50(3):37–46

    Google Scholar 

  • Drnovšek T, Perdih A, Perdih M (2005) Fiber surface characteristics evaluated by principal component analysis. J Wood Sci [Tokyo] 51(5):507–513

    Google Scholar 

  • Endres H, Jeromin G, Keller HJ (1977) Crystal structure of triiodide of 3, 3′-bis(dimethylamino)phenothiazine (methylene-blue). Z Naturforsch B Chem Sci 32:1375–1378

    Google Scholar 

  • Enescu M, Levy B, Gheorghe V (2000) Molecular dynamics simulation of methylene blue-guanine complex in water: the role of solvent in stacking. J Phys Chem B 104:1073–1077

    Article  CAS  Google Scholar 

  • Fardim P, Holmbom B (2003) Fast determination of anionic groups in different pulp fibers by methylene blue sorption. Tappi J 2:28–32

    CAS  Google Scholar 

  • Fardim P, Holmbom B, Ivaska A, Karhu J (2002) Critical comparison and validation of methods for determination of anionic groups in pulp fibers. Nordic Pulp Pap Res J 17:346–351

    Article  CAS  Google Scholar 

  • Fonseca TL, Coutinho K, Canuto S (2008) Polarization and solvatochromic shift of ortho-betaine in water. Chem Phys 349:109–114

    Article  CAS  Google Scholar 

  • Frisch MJ et al (2003) GAUSSIAN 03, revision B.03. Gaussian Inc, Pittsburgh

    Google Scholar 

  • Fujii T, Nishikiori H, Tamura T (1995) Absorption spectra of rhodamine B dimers in dip-coated thin films prepared by the sol–gel method. Chem Phys Lett 233:424–429

    Article  CAS  Google Scholar 

  • Fun H-K, Chinnakali K, Sivakumar K, Lu C-M, Xiong R-G, You X-Z (1997) N-[9-(2-Ethoxycarbonylphenyl)-6-(ethylamino)-2, 7-dimethyl-3-xanthenylidene]-ethylammonium Iodide Monohydrate. Acta Crystallogr, Sect C Cryst Struct Commun 53:1619–1620

    Article  Google Scholar 

  • Gilli P, Bertolasi V, Pretto L, Lycka A, Gilli G (2002) The nature of solid-state N-H···O/O-H···N tautomeric competition in resonant systems. Intramolecular proton transfer in low-barrier hydrogen bonds formed by the ···O=C–C=N-NH··· ⇆ ···HO-C=C-N=N··· Ketohydrazone-Azoenol system. A variable-temperature X-ray crystallographic and DFT computational study. J Am Chem Soc 124:13554–13567

    Article  CAS  Google Scholar 

  • Gilli P, Bertolasi V, Pretto L, Antonov L, Gilli G (2005) Variable-temperature X-ray crystallographic and DFT computational study of the N-H···O/N···H-O tautomeric competition in 1-(Arylazo)-2-naphthols. Outline of a transiton-state hydrogen-bond theory. J Am Chem Soc 127:4943–49539

    Article  CAS  Google Scholar 

  • Gordon ER, Walsh RB, Pennington WT, Hanks TW (2003) Syntheses and structures of two acridine orange polyiodide salts. J Chem Cryst 33:385–390

    Article  CAS  Google Scholar 

  • Grainger CT, McConnell JF (1969) The crystal structure of l-p-Nitrobenzeneazo-2-naphthol (Para Red) from overlapped twin-crystal data. Acta Crystallogr Sect B Struct Crystallogr Cryst Chem 25:1962–1970

    Article  Google Scholar 

  • Guggenberger LJ, Teufer G (1975) The crystal structure of 1, 2-Naphthoquinone 1-(2-Nitro-4-chlorophenylhydrazone). Acta Crystallogr Sect B Struct Crystallogr Cryst Chem 31:785–790

    Article  Google Scholar 

  • Harrison WTA, Ramadevi P, Seethalakshmi PG, Kumaresan S (2007) 4-Aza-1-azoniabicyclo [2.2.2]octane eosinide. Acta Crystallogr Sect E Struct Rep Online 63:o3911

    Article  Google Scholar 

  • Hunter CA, Saunders JKM (1990) The Nature of π-π interactions. J Am Chem Soc 112:5525–5534

    Article  CAS  Google Scholar 

  • Jones A, Neidle S (1975) The crystal and molecular structure of proflavine hemisulphate hydrate. Acta Crystallogr Sect B Struct Crystallogr Cryst Chem 31:1324–1333

    Article  Google Scholar 

  • Kahn-Harari A, Ballard RE, Norris EK (1973) The crystal structure of methylene blue thioeyanate. Acta Crystallogr Sect B Struct Crystallogr Cryst Chem 29:1124–1126

    Article  CAS  Google Scholar 

  • Kavitha SJ, Raj MM, Panchanatheswaran K, Lynch DE (2004) 3, 7-Bis(dimethylamino)phenothiazin-5-ium nitrate dihydrate. Acta Crystallogr Sect E Struct Rep Online 60:o1367–o1369

    Article  Google Scholar 

  • Koh LL, Eriks K (1971) The crystal structure of a stable carbonium ion, Tri-(p-aminophenyl)carbonium perchlorate, (H2NC6H4)3C+.CIO4. Acta crystallogr Sect B Struct Crystallogr Cryst Chem 27:1405–1413

    Article  CAS  Google Scholar 

  • Kuban R-J, Kulpe S, Schulz B (1985) Structure of monoclinic acridine orange hydrochloride monohydrate, C17H19N3·HCl·H2O. Cryst Res Technol 20:1073–1077

    Article  CAS  Google Scholar 

  • Lacour J, Bernardinelli G, Russell V, Dance I (2002) Crystal packing interpretation of the association of chiral threefold propeller ions: TRISPHAT anion with a triarylcarbenium cation. Cryst Eng Comm 4:165–170

    CAS  Google Scholar 

  • Leach A (1996) Molecular modelling: principles and applications. Addison-Wesley-Longman Ltd, Prentice Hall

    Google Scholar 

  • Li J, Gellerstedt G (1998a) Kinetics and mechanism of kappa number determination. Nord Pulp Paper Res J 13:147–152

    Article  CAS  Google Scholar 

  • Li J, Gellerstedt G (1998b) On the structural significance of kappa number measurement. Nord Pulp Paper Res J 13:153–158

    Article  CAS  Google Scholar 

  • Li M-T, Liao Q-L, Fu X-C, Wang C-G (2005) catena-Poly[[[3, 7-bis(dimethylamino)phenothiazonium] lead(II)-tri-μ-iodo] N, N′-dimethylformamide]. Acta Crystallogr Sect E Struct Rep Online 61:m1396–m1397

    Article  Google Scholar 

  • Liu C-Y, Lynch V, Bard AJ (1997) Effect of an electric field on the growth and optoelectronic properties of quasi-one-dimensional organic single crystals of 1-(Phenylazo)-2-naphthol. Chem Mater 9:943–949

    Article  CAS  Google Scholar 

  • Liu C-M, Xiong R-G, You X-Z, Chen W (1998) Crystal structures and luminiscence spectra of transition metal complexes of rhodamine 6G: R2[CuCl4]·3H2O and R2[MnCl4]·(EtOH)1/2 [R = 9-(2-Ethoxycarbonyl)phenyl-3, 6-bis(ethylamino)-2, 7-dimethylxanthylium]. Acta Chem Scand 52:883–890

    Article  CAS  Google Scholar 

  • Liu Y, Gustafson R–R, Callis J-B, McKean W-T (1999) A novel method to measure kappa number. Tappi J 82(9):107–111

    CAS  Google Scholar 

  • Liu G, Li Q, Zhang S-W (2002) Synthesis and crystal structure of a new charge-transfer complex [(C19H18N3)2H][PMo12O40]. Z Anorg Allg Chem 628:1895–1898

    Article  CAS  Google Scholar 

  • Liu X-G, Feng Y-Q, Liang Z-P, Wang W (2005) 1-[(4-Formylphenyl)hydrazono]naphthalen-2(1H)-one-2-naphthol (1/1). Acta Crystallogr Sect E Struct Rep Online 61:o3857–o3858

    Article  Google Scholar 

  • Lovell S, Marquardt BJ, Kahr B (1999) Crystal violet’s shoulder. J Chem Soc Perkin Trans 2:2241–2247

    Google Scholar 

  • Macrae CF, Bruno IJ, Chisholm JA, Edgington PR, McCabe P, Pidcock E, Rodriguez-Monge L, Taylor R, van de Streek J, Wood PA (2008) Mercury CSD 2.0—new features for the visualization and investigation of crystal structures. J Appl Cryst 41:466–470

    Article  CAS  Google Scholar 

  • Marr HE III, Stewart JM, Chiu MF (1973) The crystal structure of methylene blue pentahydrate. Acta Crystallogr Sect B Struct Crystallogr Cryst Chem 29:847–853

    Article  CAS  Google Scholar 

  • Matsuura A, Sato H, Sotoyama W, Takahashi A, Sakurai M (2008) AM1, PM3, and PM5 calculations of the absorption maxima of basic organic dyes. J Mol Struct (Theochem) 860:119–127

    Article  CAS  Google Scholar 

  • Mattia CA, Mazzarella L, Vitagliano V, Puliti R (1984) Stacking interactions in the acridine dyes: spectrophotometric data and crystal structure of acridine orange hydroiodide and acridine orange hydrochloride monohydrate. J Crystallogr Spectrosc Res 14:71–87

    Article  CAS  Google Scholar 

  • Mattia CA, Ortona O, Puliti R, Cascarano G, Giacovazzo C (1995) Structure of acridine orange hexafluorosilicate tetrahydrate. J Mol Struct 350:63–69

    Article  CAS  Google Scholar 

  • Moss P, Nyblom I, Sneck A, Hyvärinen K–K (1999) The location and quantification of lignin in kraft pulps using a Confocal Scanning Microscope (CLSM) and image analysis. In: Proceedings of microscopy as a tool in pulp and paper research and development. STFI, Stockholm, pp 221–228

  • Nishikiori H, Fujii T (1997) Molecular forms of rhodamine B in dip-coated thin films. J Phys Chem B 101:3680–3687

    Article  CAS  Google Scholar 

  • Obendorf SK, Glusker JP, Hansen PR, Berman HM, Carrell HL (1976) Aggregation of acridine orange: crystal structure of acridine orange tetrachlorozincate 2C17H19N3·2HCl·ZnCl2·CH3COOH. Bioinorg Chem 6:29–44

    Article  CAS  Google Scholar 

  • Olivieri AC, Wilson RB, Paul IC, Curtin DY (1989) 13C NMR and X-ray structure determination of 1-(Arylazo)-2-naphthols. Intramolecular proton transfer between nitrogen and oxygen atoms in the solid state. J Am Chem Soc 111:5525–5532

    Article  CAS  Google Scholar 

  • Perdih A (1990) Chromatographic separation of fluorescein derivatives. Vestn Slov Kem Drus 37:423–443

    CAS  Google Scholar 

  • Peterlin S, Drnovšek T, Perdih A, Dolenc D (2009) Dying of papermaking fibers with dyes of various structural types as a means for fiber surface characterization. Acta Chim Slov 56:418–425

    CAS  Google Scholar 

  • Raj MM, Dharmaraja A, Kavitha SJ, Panchanatheswaran K, Lynch DE (2007) Mercury(II)–methylene blue interactions: complexation and metallate formation. Inorg Chim Acta 360:1799–1808

    Article  CAS  Google Scholar 

  • Reddy BS, Seshadri TP, Sakore TD, Sobell HM (1979) Visualization of drug-nucleic acid interactions at atomic resolution: V. Structure of two aminoacridine-dinucleoside monophosphate crystalline complexes, proflavine-5-iodocytidylyl (3′–5′) guanosine and acridine orange-5-iodocytidylyl (3′–5′) guanosine. J Mol Biol 135:787–812

    Article  CAS  Google Scholar 

  • Salmen R, Malterud KE, Pedersen BF (1988) Structures of the Azo Dyes Sudan Red G [1-(2-Methoxyphenylazo)-2-naphthol], C17H14N2O2, and Sudan Yellow (1-Phenylazo-2-naphthol), C16H12N2O. Acta Chem Scand A 42:493–499

    Article  Google Scholar 

  • Schmidt MU, Buchsbaum C, Schnorr JM, Hofmann DWM, Ermrich M (2007) Pigment-Orange-5: crystal structure determination from a non-indexed X-ray powder diagram. Z Kristallogr 222:30–33

    Article  CAS  Google Scholar 

  • Schmidt MU, Brüning J, Wirth D, Bolte M (2008) Two azo pigments based on β-naphthol. Acta Cryst C64:o474–o477

    CAS  Google Scholar 

  • Shieh H-S, Berman HM, Dabrow M, Neidle S (1980) The structure of drug-deoxydinucleoside phosphate complex; generalized conformational behavior of intercalation complexes with RNA and DNA fragments. Nucleic Acids Res 8:85–98

    Article  CAS  Google Scholar 

  • Shieh H-S, Berman HM, Neidle S, Taylor G, Sanderson M (1982) The structure of a hydrated 1:2 complex of Adenylyl(3′-5′)adenosine-proflavine hemisulphate. Acta Crystallogr Sect B Struct Crystallogr Cryst Chem 38:523–531

    Article  Google Scholar 

  • Snaathorst D, Doesburg HM, Perenboom JAAJ, Keijzers CP (1981) Structural, EPR, and magnetic studies of a nonplanar copper(I1) maleonitriledithiolate complex. Inorg Chem 20:2526–2532

    Article  CAS  Google Scholar 

  • Soneta Y, Miyamura K (2006) Systematic change in stacking structure induced by alkyl chains and spectral change due to hetero-aggregation in [Ni(dmit)2] salts of methylene blue analogues. Bull Chem Soc Jpn 79:282–287

    Article  CAS  Google Scholar 

  • Soneta Y, Midorikawa T, Miyamura K (2006a) Anomalous distortion and stacking column formation of [Ni(dmit)2] induced by propeller-shaped dye cations, crystal violet and basic fuchsin. Bull Chem Soc Jpn 79:1060–1062

    Article  CAS  Google Scholar 

  • Soneta Y, Sakamoto S, Miyamura K (2006b) 9-(2-Carboxyphenyl)-3, 6-bis(diethylamino)-xanthylium bis(2-thioxo-1, 3-dithiole-4, 5-dithiolato)nickelate(III). Acta Crystallogr Sect E Struct Rep Online 62:m3448–m3450

    Article  Google Scholar 

  • Sours RE, Fink DA, Swift JA (2002) Dyeing uric acid crystals with methylene blue. J Am Chem Soc 124:8630–8636

    Article  CAS  Google Scholar 

  • Spangler BD, Vanýsek P, Hernandez IC, Rogers RD (1989) Structure of crystal violet tetraphenylborate. J Crystallogr Spectrosc Res 19:589–596

    Article  CAS  Google Scholar 

  • Srebotnik E, Messner K (1994) A simple method uses differential staining and light microscopy to asses the selectivity of wood delignification by white rot fungi. Appl Environ Microbiol 60:1383–1386

    CAS  Google Scholar 

  • Swaminathan P, Westhof E, Sundaralingam M (1982) Structure of a 1:2 Sandwich complex of proflavine and adenosine with an unusual puckering disorder and a site shared by sulfate and water molecules. Acta Crystallogr Sect B Struct Crystallogr Cryst Chem 38:515–522

    Article  Google Scholar 

  • Tappi standard method, Alpha-, beta- and gamma- cellulose in pulp. T 203 om-93

  • Varga RA, Rus A, Venter MM, Negreanu-Pirjol T, Guran C (2007) 3,6-Diaminoacridinium perchlorate. Acta Crystallogr Sect E Struct Rep Online 63:o4317

  • Wang H, Xiong R-G, Liu C-M, Chen H-Y, You X-Z, Chen W (1997) Synthesis and the first structural characterization of a metal complex of rhodamine 6G, R2[CdC14]·EtOH·H2O (R = 9-(2-ethoxycarbonylphenyl)-3, 6-bis(ethylamino)-2, 7-dimethylxanthylium). Inorg Chim Acta 254:183–187

    Article  CAS  Google Scholar 

  • Whitaker A (1977) Crystal structure of CI Pigment Red 6, 4-chloro-2-nitrophenylazo-2-naphthol. Z Kristallogr 145:271–288

    Article  CAS  Google Scholar 

  • Whitaker A (1978) Crystal structure of CI Pigment Red 3, 4-methyl-2-nitrophenylazo-2-naphthol. Z Kristallogr 147:99–112

    Article  CAS  Google Scholar 

  • Xie J-L (2008) Investigation of inorganic–organic hybrid materials containing polyoxometalate cluster anions and organic dye cations. J Coord Chem 61:3993–4003

    Article  CAS  Google Scholar 

  • Yatsenko AV, Paseshnichenko KA, Chernyshev VV, Schenk H (2001) 1-[(2-Nitrophenyl)hydrazono]-1H-naphthalen-2-one (Pigment Orange 2) from powder data. Acta Crystallogr Sect E Struct Rep Online 57:o1152–o1153

    Article  Google Scholar 

  • Yu X, Minor JL, Atalla RH (1995) Mechanism of action of Simons’ stain. Tappi J 78(6):175–179

    CAS  Google Scholar 

  • Zhang Q, Wang L-F, Huang X-Y, Wu Q-J, Lin Q (2001) Synthesis and crystal structure of rhodamine 6G complex with zinc(II). Fenzi Kexue Xuebao (Chin) (J Mol Sci) 17:65–70

    Google Scholar 

Download references

Acknowledgments

Financial support from the Slovenian Research Agency (ARRS) through project P1-0175 is gratefully acknowledged. We are grateful to the National Institut of Chemistry, Ljubljana (Slovenia) for computational facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franc Perdih.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perdih, F., Perdih, A. Lignin selective dyes: quantum-mechanical study of their characteristics. Cellulose 18, 1139–1150 (2011). https://doi.org/10.1007/s10570-011-9558-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-011-9558-3

Keywords

Navigation