Skip to main content
Log in

Properties of cellulose films prepared from NaOH/urea/zincate aqueous solution at low temperature

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Cellulose films were successfully prepared from NaOH/urea/zincate aqueous solution pre-cooled to −13 °C by coagulating with 5% H2SO4. The cellulose solution and regenerated cellulose films were characterized with dynamic rheology, ultraviolet–visible spectroscope, scanning electron microscopy, wide angle X-ray diffraction, Fourier transform infrared (FT-IR) spectrometer, thermogravimetry and tensile testing. The results indicated that at higher temperature (above 65 °C) or lower temperature (below −10 °C) or for longer storage time, gels could form in the cellulose dope. However, the cellulose solution remained a liquid state for a long time at 0–10 °C. Moreover, there was an irreversible gelation in the cellulose solution system. The films with cellulose II exhibited better optical transmittance, high thermal stability and tensile strength than that prepared by NaOH/urea aqueous solution without zincate. Therefore, the addition of zincate in the NaOH/urea aqueous system could enhance the cellulose solubility and improve the structure and properties of the regenerated cellulose films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Cai J, Zhang L (2006) Unique gelation behavior of cellulose in NaOH/urea aqueous solution. Biomacromolecules 7:183–189

    Article  CAS  Google Scholar 

  • Cai J, Liu Y, Zhang L (2006) Dilute solution properties of cellulose in LiOH/urea aqueous system. J Polym Sci Part B Polym Phys 44:3093–3101

    Article  CAS  Google Scholar 

  • Cai J, Zhang L, Zhou J, Qi H, Chen H, Kondo T, Chen X, Chu B (2007) Multifilament fibers based on dissolution of cellulose in NaOH/urea aqueous solution: Structure and properties. Adv Mater 19:821–825

    Article  CAS  Google Scholar 

  • Cai J, Zhang L, Liu S, Liu Y, Xu X, Chen X, Chu B, Guo X, Xu J, Cheng H, Han C, Kuga S (2008) Dynamic self-assembly induced rapid dissolution of cellulose at low temperature. Macromolecules 41:9345–9351

    Article  CAS  Google Scholar 

  • Chang C, Peng J, Zhang L, Pang D (2009) Strongly fluorescent hydrogels with quantum dots embedded in cellulose matrices. J Mater Chem 19:7771–7776

    Article  CAS  Google Scholar 

  • Fenn D, Heinze T (2009) Novel 3-mono-O-hydroxyethyl cellulose: synthesis and structure characterization. Cellulose 16:853–861

    Article  CAS  Google Scholar 

  • Fink HP, Weigel P, Purz HJ, Ganster J (2001) Structure formation of regenerated cellulose materials from NMMO-solutions. Prog Polym Sci 26:1473–1524

    Article  CAS  Google Scholar 

  • Hannuksela T, Fardim P, Holmbom B (2003) Sorption of spruce O-acetylated galactoglucomannans onto different pulp fibres. Cellulose 10:317–324

    Article  CAS  Google Scholar 

  • Heinze T, Liebert T (2001) Unconventional methods in cellulose functionalization. Prog Polym Sci 26:1689–1762

    Article  CAS  Google Scholar 

  • Isogai A, Usuda M, Kato T, Uryu T, Atalla R (1989) Solid-state CP/MAS 13C NMR study of cellulose polymorphs. Macromolecules 22:3168–3172

    Article  CAS  Google Scholar 

  • Kaplan D (1998) Biopolymers from renewable resources. Spinger, Berlin

    Google Scholar 

  • Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: Fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393

    Article  CAS  Google Scholar 

  • Liu H, Wang D, Song Z, Shang S (2011) Preparation of silver nanoparticles on cellulose nanocrystals and the application in electrochemical detection of DNA hybridization. Cellulose 18:67–74

    Article  CAS  Google Scholar 

  • Luo X, Zhang L (2010) New solvents and functional materials prepared from cellulose solutions in alkali/urea aqueous system. Food Res Int. doi 10.1016/j.foodres.2010.05.016

  • Luo X, Liu S, Zhou J, Zhang L (2009) In situ synthesis of Fe3O4/cellulose microspheres with magnetic-induced protein delivery. J Mater Chem 19:3538–3545

    Article  CAS  Google Scholar 

  • Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082

    Article  CAS  Google Scholar 

  • Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125:14300–14306

    Article  CAS  Google Scholar 

  • Qi H, Chang C, Zhang L (2009) Properties and applications of biodegradable transparent and photoluminescent cellulose films prepared via a green process. Green Chem 11:177–184

    Article  CAS  Google Scholar 

  • Rabek J (1980) Experimental methods in polymer chemistry. Wiley, Chichester

    Google Scholar 

  • Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Rederick WJ, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (2006) The path forward for biofuels and biomaterials. Science 311:484–489

    Article  CAS  Google Scholar 

  • Regalbuto J (2009) Cellulosic biofuels-get gasoline? Science 325:822–824

    Article  Google Scholar 

  • Ruan D, Zhang L, Lue A (2006) A rapid process for producing cellulose multi-filament fibers from a NaOH/thiourea solvent system. Macromol Rapid Commun 27:1495–1500

    Article  CAS  Google Scholar 

  • Ruan D, Lue A, Zhang L (2008) Gelation behaviors of cellulose solution dissolved in aqueous NaOH/thiourea at low temperature. Polymer 49:1027–1036

    Article  CAS  Google Scholar 

  • Tilman D, Socolow R, Foley J, Hill J, Larson E, Lynd L, Pacala S, Reilly J, Searchinger T, Somerville C, Williams R (2009) Beneficial biofuels—the food, energy, and environment trilemma. Science 325:270–271

    Article  CAS  Google Scholar 

  • Yang Q, Qi H, Lue A, Hu K, Cheng G, Zhang L (2011) Role of sodium zincate on cellulose dissolution in NaOH/urea aqueous solution at low temperature. Carbohydr Polym 83:1185–1191

    Article  CAS  Google Scholar 

  • Zhang X, Huang J, Chang P, Li J, Chen Y, Wang D, Yu J, Chen J (2010) Structure and properties of polysaccharide nanocrystal-doped supramolecular hydrogels based on Cyclodextrin inclusion. Polymer 51:4398–4407

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Basic Research Program of China (973 Program, 2010CB732203), National Supporting Project for Science and Technology (2006BAF02A09), and the National Natural Science Foundation of China (20474048 and 20874079).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lina Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Q., Qin, X. & Zhang, L. Properties of cellulose films prepared from NaOH/urea/zincate aqueous solution at low temperature. Cellulose 18, 681–688 (2011). https://doi.org/10.1007/s10570-011-9514-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-011-9514-2

Keywords

Navigation