Skip to main content
Log in

Structure conversions of cellulose IIII crystal models in solution state: a molecular dynamics study

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

This paper re-examines our previous molecular dynamics (MD) study on cellulose IIII crystal models with finite dimensions solvated in explicit water molecules. Eight crystal models, differing in a constituent lattice plane and dimensions, were studied. One calculation allowed for O–H and C–H bond stretching, and had a small time step of 0.5 fs. The other calculation adopted non-scaling factors of the 1–4 non-bonded interactions. As in our previous study, in the former MD calculations, six of the eight crystal models exhibited structure conversion with cooperative chain slippages generated by a progressive fiber bend. This converted the initial non-staggered chain packing of cellulose IIII into a near one-quarter staggering and gave the crystal model a triclinic-like configuration. In contrast, in the non-1–4 scaling MD calculations, all of the eight crystal models retained the initial cellulose IIII crystal structure. Another series of non-1–4 scaling MD calculations were performed for the four crystal models containing chains with a degree of polymerization (DP) of 40 at 370 K, which simulated hot water treatment to convert cellulose IIII to Iβ. Some of the hydroxymethyl groups irreversibly rotated from gt into tg conformation. This accompanied exchange of the intrasheet hydrogen bonding scheme along the (1 −1 0) lattice plane from O2–O6 to O3–O6. The original corrugated (1 −1 0) chain sheet was partly converted into a cellulose I-like flat chain sheet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Basma M, Sundara S, Calgan D, Venali T, Woods RJ (2001) Solvated ensemble averaging in the calculation of partial atomic charges. J Comp Chem 22:1125–1137

    Article  CAS  Google Scholar 

  • Bock K, Guzman HBF, Ogawa S (1988) A 1H- and 13C-n.m.r. spectroscopic analysis of six pseudohexoses. Carbohydr Res 174:354–359

    Article  CAS  Google Scholar 

  • Case DA, Darden TA, Cheatham TE III, Simmerling CL, Wang J, Duke RE, Luo R, Merz KM, Pearlman DA, Crowley M, Walker RC, Zhang W, Wang B, Hayik S, Roitberg A, Seabra G, Wong KF, Paesani F, Wu X, Brozell S, Tsui V, Gohlke H, Yang L, Tan C, Mongan J, Hornak V, Cui G, Beroza P, Mathews DH, Schafmeister C, Ross WS, Kollman PA (2006) AMBER 9, University of California, San Francisco

  • Chanzy H, Henrissat B, Vincendon M, Tanner SF, Belton PS (1987) Solid-state 13C-N.M.R. and electron microscopy study on the reversible cellulose I → cellulose IIII transformation in Valonia. Carbhydr Res 160:1–11

    Article  CAS  Google Scholar 

  • Essmann U, Pereta L, Berkowitz ML, Darden TA, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8593

    Article  CAS  Google Scholar 

  • French AD, Dowd MK (1993) Exploration of disaccharide conformations by molecular mechanics. J Mol Struct (Theochem) 286:183–201

    Article  Google Scholar 

  • French AD, Johnson GP (2009) Cellulose and the twofold screw axis: modeling and experimental arguments. Cellulose 16:959–973

    Article  CAS  Google Scholar 

  • French AD, Miller DP (1993) Comparisons of hydrogen bonding in small carbohydrate molecules by diffraction and MM3(92) calculations. In: Smith DA (ed) Modeling the hydrogen bond. ACS Symp Ser, 569. American Chemical Society, Washington DC, pp 235–251

    Google Scholar 

  • French AD, Miller DP, Aabloo S (1993) Miniature crystal models of cellulose polymorphs and other carbohydrates. Int J Biol Macromol 15:30–36

    Article  CAS  Google Scholar 

  • Gessler K, Krauss N, Steiner T, Betzel C, Sarko A, Saenger W (1995) β-D-Cellotetraose hemihydrate as a structural model for cellulose II. An X-ray diffraction study. J Am Chem Soc 117:11397–11406

    Article  CAS  Google Scholar 

  • Hawkins GD, Cramer CJ, Truhlar DG (1995) Pairwise solute descreening of solute charges from a dielectric medium. Chem Phys Lett 246:122–129

    Article  CAS  Google Scholar 

  • Hawkins GD, Cramer CJ, Truhlar DG (1996) Parametrized models of aqueous free energies of solvation based on pairwise descreening of solute atomic charges from a dielectric medium. J Phys Chem 100:19824–19839

    Article  CAS  Google Scholar 

  • Humphrey W, Dalke A, Schulten K (1996) VMD: Visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  Google Scholar 

  • Jorgensen WL, Chandrasekhar J, Madura J, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  • Kirchner KN, Woods RJ (2001a) Solvent interactions determine carbohydrate conformation. Proc Natl Acad Sci USA 98:10541–10545

    Article  Google Scholar 

  • Kirchner KN, Woods RJ (2001b) Quantum mechanical study of the nonbonded forces in water-methanol complexes. J Phys Chem A 105:4150–4155

    Article  Google Scholar 

  • Kolpak FJ, Blackwell J (1975) The structure of regenerated cellulose. Macromolecules 8:563–564

    Article  CAS  Google Scholar 

  • Langan P, Nishiyama Y, Chanzy H (2001) X-ray structure of mercerized cellulose II at 1 Å resolution. Biomacromolecules 2:410–416

    Article  CAS  Google Scholar 

  • Langan P, Sukumar N, Nishiyama Y, Chanzy H (2005) Synchrotron X-ray structures of cellulose Iβ and regenerated cellulose II at ambient temperature and 100 K. Cellulose 12:551–562

    Article  CAS  Google Scholar 

  • Marchessaut RH, Pérez S (1979) Conformations of the hydroxymethyl group in crystalline aldohexopyranoses. Biopolymers 18:2369–2374

    Article  Google Scholar 

  • Matthews JF, Skopec CE, Mason PE, Zuccato P, Torget RW, Sugiyama J, Himmel ME, Brady JW (2006) Computer simulation studies of microcrystalline cellulose Iβ. Carbohydr Res 341:138–152

    Article  CAS  Google Scholar 

  • Nishida Y, Ohrui H, Meguro H (1984) 1H-NMR studies of (6r)- and (6s)-deuterated d-hexoses: assignment of the preferred rotamers about C5–C6 bond of D-glucose and D-galactose derivatives in solutions. Tetrahedron Lett 25:1575–1578

    Article  CAS  Google Scholar 

  • Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082

    Article  CAS  Google Scholar 

  • Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125:14300–14306

    Article  CAS  Google Scholar 

  • Ohrui H, Nishida Y, Watanabe M, Hori H, Meguro H (1985) 1H-NMR Studies on (6R)- and (6S)-deuterated (1–6)-linked disaccharides: assignment of the preferred rotamers about C5–C6 bond of (1–6)-disaccharides in solution. Tetrahedron Lett 26:3251–3254

    Article  CAS  Google Scholar 

  • Raymond S, Heyraud A, Tran Q, Kvick Å, Chanzy H (1995) Crystal and molecular structure of b-D-cellotetraose hemihydrate as a model of cellulose II. Macromolecules 28:2096–2100

    Article  CAS  Google Scholar 

  • Roche E, Chanzy H (1981) Electron microscopy study of the transformation of cellulose I into cellulose IIII in Valonia. Int J Biol Macromol 3:201–206

    Article  CAS  Google Scholar 

  • Ryckaert JP, Cicotti G, Berendsen HJC (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341

    Article  CAS  Google Scholar 

  • Sarko A (1978) What is the crystalline structure of cellulose? Tappi 61:59–61

    CAS  Google Scholar 

  • Stipanovic AJ, Sarko A (1976) Packing analysis of carbohydrates and polysaccharides. 6. Molecular and crystal structure of regenerated cellulose II. Macromolecules 9:851–857

    Article  CAS  Google Scholar 

  • Sugiyama J, Vuong R, Chanzy H (1991) Electron diffraction study of the two crystalline phases occurring in native cellulose from an algal cell wall. Macromolecules 24:4168–4175

    Article  CAS  Google Scholar 

  • Wada M (2001) In situ observation of the crystalline transformation from cellulose IIII to Iβ. Macromolecules 34:3271–3275

    Article  CAS  Google Scholar 

  • Wada M, Chanzy H, Nishiyama Y, Langan P (2004) Cellulose IIII crystal structure and hydrogen bonding by synchrotron X-ray and neutron fiber diffraction. Macromolecules 37:8548–8555

    Article  CAS  Google Scholar 

  • Wada M, Heux L, Nishiyama Y, Langan P (2009) X-ray crystallographic, scanning microprobe X-ray diffraction, and cross-polarized/magic angle spinning 13C NMR studies of the structure of cellulose IIIII. Biomacromolecules 10:302–309

    Article  CAS  Google Scholar 

  • Weiser J, Shenkin PS, Still WC (1999) Approximate atomic surfaces from linear combinations of pairwise overlaps (LCPO). J Comput Chem 20:217–230

    Article  CAS  Google Scholar 

  • Yoneda Y, Mereiter K, Jaeger C, Brecker L, Kosma P, Rosenau T, French A (2008) van der Waals versus hydrogen-bonding forces in a crystalline analog of cellotetraose: cyclohexyl 4′-O-cyclohexyl β-D-cellobioside cyclohexane solvates. J Am Chem Soc 130:16678–16690

    Article  CAS  Google Scholar 

  • Yui T, Hayashi S (2007) Molecular dynamics simulations of solvated crystal models of cellulose Iα and IIII. Biomacromolecules 8:817–824

    Article  CAS  Google Scholar 

  • Yui T, Hayashi S (2009) Structural stability of the solvated cellulose IIII crystal models: a molecular dynamics study. Cellulose 16:151–165

    Article  CAS  Google Scholar 

  • Yui T, Nishimura S, Akiba S, Hayashi S (2006) Swelling behavior of the cellulose Iβ crystal models by molecular dynamics. Carbohydr Res 341:2521–2530

    Article  CAS  Google Scholar 

  • Yui T, Shiiba H, Tsuysumi Y, Hayashi S, Miyata T, Hirata F (2010) Systematic docking study of carbohydrate binding module protein of Cel7A with cellulose Iβ crystal model. J Phys Chem B 114:49–58

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was partly supported by the Strategic Research Promotion Fund 2009-2014 from the Ministry of Education, Culture, Sport, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshifumi Yui.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(MPG 48812 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yui, T., Okayama, N. & Hayashi, S. Structure conversions of cellulose IIII crystal models in solution state: a molecular dynamics study. Cellulose 17, 679–691 (2010). https://doi.org/10.1007/s10570-010-9422-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-010-9422-x

Keywords

Navigation