Skip to main content
Log in

Free radicals and their electron spin relaxation in cellobiose. X-band and W-band ESR and electron spin echo studies

  • Research Article
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

By use of 9.7 GHz and 94 GHz ESR spectra and electron spin echo (ESE)-detected spectra the six radical centres produced by γ-irradiation of cellobiose were identified. The radicals are localized on different carbon atoms. Use of high-frequency ESR spectra with computer resolution enhancement methods enabled unique radical identification and determination of g-factors and proton hyperfine splitting, A, with high accuracy. For radiation doses below 20 kGy three radicals dominate: on C1 with isotropic doublet A = 1.8 mT; on C2, C3 and C4 with triplet A = 2.9 mT; and localized on CH2 with anisotropic triplet. For doses above 100 kGy the radical on C1 dominates, because of cleavage of the glycosidic bonds. Electron spin–lattice relaxation shows that radiation damage of the cellulose structure around the radical centres is significant and radical molecules do not participate in phonon dynamics of the host lattice. The relaxation is because of tunnelling motions of the ring or OH-groups, with tunnelling splitting 2.4 cm−1. Electron spin echo dephasing results identify cellobiose ring torsions with activation energy 117 cm−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atalla R.H. (1999) In: Pinto B.N. (ed) Comprehensive natural product chemistry, vol 3. Carbohydrates and their derivatives including tannin, cellulose, and related lignins. Elsevier, Amsterdam, pp 529–598

  • Bowman M.K., Kevan L. (1977). An electron spin–lattice relaxation mechanism involving tunneling modes for trapped electrons in gamma-irradiated ethanol glasses. J. Phys. Chem. 81:456–461

    Article  CAS  Google Scholar 

  • Charlesby A. (1982). Crosslinking and degradation of polymers. Radiat. Phys. Chem. 18:59–66

    Google Scholar 

  • Chu S.S.C., Jeffrey G.A. (1968). The refinement of the crystal structure of β-D-glucose and cellobiose. Acta Crystallogr. B 24:830–838

    Article  CAS  Google Scholar 

  • Delincee H., Soika Ch. (2002). Improvement of the ESR detection of irradiated food containing cellulose employing a simple extraction method. Radiat. Phys. Chem. 63:437–441

    Article  CAS  Google Scholar 

  • Engalytcheff A., Kolberg M., Barra A.L., Andersson K.K., Tilquin B. (2004). The use of multi-frequency EPR technique to identify the radicals produced in irradiated β-blockers. Free Radical Res 38:59–66

    Article  CAS  Google Scholar 

  • Ershov B.G., Isakova O.V. (1984). Formation and thermal transformations of free radicals in gamma-radiation cellulose. Bull. Acad. Sci. USSR. 33:1171–1175

    Article  Google Scholar 

  • Ershov B.G., Klimentov A.S., Bykov L.E. (1977). EPR spectra of radicals in γ-irradiated wood and cellulose. Khimiya Drevesiny (Russ.) 2:74–78

    Google Scholar 

  • Ershov B.G. (1998). Radiation-chemical degradation of cellulose and other polysaccharides. Russian Chem. Rev. 67:315–334

    Article  Google Scholar 

  • Franco R.W.A., Martin-Neto L., Kato M.S.A., Furlan G.R., Walder J.M.M., Colagno L.A. (2004). Identification of irradiation treatment in black pepper by electron paramagnetic resonance. Int. J. Food Sci. Tech. 39:395–401

    Article  CAS  Google Scholar 

  • Gamble W.L., Miyagawa I., Hartman R.L. (1968). Some Effects of Quantization of Internal Rotation on Spin–lattice Relaxation and Hyperfine Structure. Phys. Rev. Lett. 20:415–418

    Article  CAS  Google Scholar 

  • Goslar J., Hoffmann S.K., Hilczer W. (2002). Local vibration mode mechanism of electron spin–lattice relaxation of PO 2−3 radicals in γ-irradiated (glycine) H3PO3 crystal and in its deuterated analogue. Sol. State Comm. 121:423–427

    Article  CAS  Google Scholar 

  • Hoffmann S.K., Goslar J., Hilczer W., Augustyniak-Jablokow M.A., Kiczka S. (2001). Dephasing relaxation of the electron spin echo of the vibronic Cu(H2O)6 complexes in Tutton salt crystals at low temperatures. J. Magn. Res. 153:56–68

    Article  CAS  Google Scholar 

  • Hoffmann S.K., Hilczer W., Radczyk T. (2003). Electron spin–lattice relaxation in polymers and crystals related to disorder and structure defects. Acta Phys. Pol. 103:373–385

    CAS  Google Scholar 

  • Hoffmann S.K., Hilczer W., Goslar J., Kiczka S., Polus I. (2002). Resonance-type effects in free radical electron spin–lattice relaxation and electron spin echo dephasing due to a dynamics of a homogeneous-chain oligomeric system. Phys. Chem. Chem. Phys. 4:4944–4951

    Article  CAS  Google Scholar 

  • Hon D.N., Srinivasan K.S.V. (1983). Mechanochemical processes in cotton cellulose fiber. J. Appl. Polymer Sci. 28:1–10

    Article  CAS  Google Scholar 

  • Hon N.S. (1975). Formation of free radicals in photoirradiated cellulose. VI. Effect of lignin. J. Polymer Sci. Polym. Chem. 13:2653–2669

    Article  CAS  Google Scholar 

  • Jacobson R.A., Wunderlich J.A., Lipscomb W.N. (1961). The crystal and molecular structure of cellobiose. Acta Crys. B 14:598–607

    Article  CAS  Google Scholar 

  • Jesus E.F.O., Rossi A.M., Lopes R.T. (1999). An ESR study on identification of gamma-irradiated kiwi, papaya and tomato using fruit pulp. Int. J. Food Sci. Technol. 34:173–178

    Article  Google Scholar 

  • Kawano Y., Logarezzi A. (1995). X-ray induced degradation of regenerated cellulose membrane films. J. M. Polymer Degr. Stabil. 50:125–130

    Article  CAS  Google Scholar 

  • Kuzuya M., Yamauchi Y. (1998). Plasma-induced free radicals of polycrystalline dicarbohydrates studied by electron spin resonance. Thin Solid Films. 316:158–164

    Article  Google Scholar 

  • Kubota H., Ogiwara Y., Matsuzaki K. (1975). Photo-induced radicals in glucose and cellobiose. J. Appl. Polymer Sci. 19:1291–1296

    Article  Google Scholar 

  • Kuzina S.I., Brezgunov A.Yu., Dubinskii A.A., Mikhailov A.I. (2004). Free radicals in the photolysis of polymers: IV. Radicals in γ- and UV-irradiated wood and lignin. High Energy Chem. 38:298–305

    Article  CAS  Google Scholar 

  • Kuzuya M., Yamauchi Y., Kondo (1999). Mechanolysis of glucose-based polysaccharides as studied by electron spin resonance. S. J. Phys. Chem. B 103:8051–8059

    Article  CAS  Google Scholar 

  • Mazeau K., Heux L. (2003). Molecular dynamics simulations of bulk native crystalline and amorphous structures of cellulose. J. Phys. Chem. B 107:2394–2403

    Article  CAS  Google Scholar 

  • Meissner D., Einfeldt L., Einfeldt (2001). Dielectric relaxation analysis of cellulose oligomers and polymers in dependency on their chain length. J. J. Polymer Sci. B. Polymer Phys. 39:2491–2500

    Article  CAS  Google Scholar 

  • Misra S.K. (1998). Spin–lattice relaxation time in amorphous materials as affected by exchange interaction and tunneling. Spectrochim. Acta A 54:2257–2267

    Article  Google Scholar 

  • Mohanty A.K., Singh B.C. (1988). Radiation-induced and photoinduced grafting onto cellulose and cellulosic materials. Polym. Plast. Techn. Eng. 27:435–466

    CAS  Google Scholar 

  • Moncrief J.W. and Sims S.O. 1969. Absolute configuration determination using the anomalous scattering of Cu-Kα X-rays by oxygen atoms: Cellobiose. J. Chem. Soc. D 914–915

  • Murphy J. (1966). Spin–lattice Relaxation Due to Local Vibrations with Temperature-Independent Amplitudes. Phys. Rev. 145:241–247

    Article  CAS  Google Scholar 

  • Nakamura Y., Ogiwara Y., Phillips G.O. (1985). Free-radical formation and degradation of cellulose by ionizing-radiation. Polym. Photochem. 6:135–159

    Article  CAS  Google Scholar 

  • Ranby B., Rabek J.F. (1977). In ESR Spectroscopy in Polymer Research. Springer-Verlag, Berlin

    Google Scholar 

  • Tang H.R., Belton P. (2002). Solid-state NMR studies of cellobiose motions. S. Sol. State Nucl. Magn. Res. 21:117–133

    Article  CAS  Google Scholar 

  • Wach R.A., Mitomo H., Yoshii F.J. (2004). ESR investigation of gamma-irradiated methylcellulose and hydroxyethylcellulose in dry state and in aqueous solution. Radioanal. Nucl. Chem. 261:113–118

    Article  CAS  Google Scholar 

  • Wach R.A., Mitomo H., Nagasawa N., Yoshii F. (2003). Radiation crosslinking of carboxymethylcellulose of various degree of substitution at high concentration in aqueous solution of natural pH. Rad. Phys. Chem. 68:771–779

    Article  CAS  Google Scholar 

  • Yamauchi Y., Sugito M., Kuzuya M. (1999). Plasma-induced free radicals of polycrystalline monocarbohydrates studied by Electron Spin Resonance. Chem. Pharm. Bull. 47:273–278

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thanks Professor Gunnar Jeschke, in whose laboratory at Max-Planck Institute for Polymer Research in Mainz the W-band ESR measurements were carried out, for valuable suggestions and comments, and Dr Yevhen Polyhach for technical assistance during the measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanislaw K. Hoffmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wencka, M., Wichlacz, K., Kasprzyk, H. et al. Free radicals and their electron spin relaxation in cellobiose. X-band and W-band ESR and electron spin echo studies. Cellulose 14, 183–194 (2007). https://doi.org/10.1007/s10570-006-9097-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-006-9097-5

Keywords

Navigation