Skip to main content
Log in

Structural investigation of cellulose Iα and Iβ by 2D RFDR NMR spectroscopy: determination of sequence of magnetically inequivalent d-glucose units along cellulose chain

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

In our previous studies of the crystal structure of native cellulose (cellulose I) by solid-state two-dimensional (2D) 13C–13C INADEQUATE, it was revealed that cellulose Iα contains two kinds of β-d-glucose residues (A and A′) in the unit cell and that cellulose Iβ contains another two kinds of residues (B and B′). In the present study, the sequence of residues A and A′ along the same chains in cellulose Iα and that of residues B and B′ in Iβ were investigated by 2D 13C–13C rotor-synchronized radiofrequency-driven recoupling (RFDR) experiments using, respectively, uniformly 13C6-labeled (U−13C6) bacterial cellulose and the same [U−13C6] cellulose sample after thermal treatment at 260 °C. The RFDR spectra recorded with a short mixing time (1.0 ms) showed dipolar-coupled 13C spin pairs of only the neighboring carbon of the both phases, while those recorded with a longer mixing time (3.0–15 ms) provided correlations between weakly coupled 13C spin pairs as well as strongly coupled 13C spin pairs such as neighboring carbon nuclei. In the RFDR spectrum of the [U−13C6] cellulose recorded with a mixing time of 15 ms, the inter-residue 13C–13C correlation between C4 of residue A and C2 of residue A′ and that between C3 of residue A and C4 of residue A′ were clearly observed. In the case of cellulose Iβ, however, inter-residue 13C–13C correlations between residues B and B′ could not be detected in the series of RFDR spectra recorded with different mixing times of annealed [U−13C6] cellulose. From these findings, that cellulose Iα was revealed to have the –AA′– repeating units along the cellulose chain. For cellulose Iβ, it was revealed that the respective residues B and B′ are composed of independent chains (–BB– and –B′–B′– repeating units) and that there are no –BB′– repeating units in the chain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arashida T., Ishino T., Kai A., Hatanaka K., Araike T., Matsuzaki K., Kaneko Y. and Miura T. (1993). Biosynthesis of cellulose from culture media containing 13C-labeled glucose as a carbon source. J. Carbohydr. Chem. 12:641–649

    Article  CAS  Google Scholar 

  • Atalla R.H. and VanderHart D.L. (1984). Native cellulose: a composite of two distinct crystalline forms. Science 223:283–285

    Article  CAS  Google Scholar 

  • Aue W.P., Bartholdi E. and Ernst R.R. (1976). Two-dimensional spectroscopy. Application to nuclear magnetic resonance. J. Chem. Phys. 64:2229–2246

    Article  CAS  Google Scholar 

  • Bax A., Freeman R. and Frenkiel T.A. (1981). An NMR technique for tracing out the carbon skeleton of an organic molecule. J. Am. Chem. Soc. 103:2102–2104

    Article  CAS  Google Scholar 

  • Bennett A.E., Ok J.H., Griffin R.G. and Vega S. (1992). Chemical shift correlation spectroscopy in rotating solids: radio frequency-driven dipolar recoupling and longitudinal exchange. J. Chem. Phys. 96:8624–8627

    Article  CAS  Google Scholar 

  • Bennett A.E., Rienstra C.M., Auger M., Lakshmi K.V. and Griffin R.G. (1995). Heteronuclear decoupling in rotating solids. J. Chem. Phys. 103:6951–6958

    Article  CAS  Google Scholar 

  • Debzi E.M., Chanzy H., Sugiyama J., Tekely P. and Excoffier G. (1991). The Iα→Iβ transformation of highly crystalline cellulose by annealing in various mediums. Macromolecules 24:6816–6822

    Article  CAS  Google Scholar 

  • Finkenstadt V.L. and Millane R.P. (1998). Crystal structure of Valonia cellulose Iβ. Macromolecules 31:3776–3778

    Article  Google Scholar 

  • Gardner K.H. and Blackwell J. (1974). The structure of native cellulose. Biopolymers 13:1975–2001

    Article  CAS  Google Scholar 

  • Horii F., Yamamoto H. and Kitamaru R. (1987). Transformation of native cellulose crystals induced by saturated stream at high temperatures. Macromolecules 20:2946–2949

    Article  CAS  Google Scholar 

  • Kai A., Arashida T., Hatanaka K., Araike T., Matsuzaki K., Miura T. and Kaneko Y. (1994). Analysis of the biosynthetic process of cellulose and curdlan using 13C-labeled glucose. Carbohydr. Polym. 23:235–239

    Article  CAS  Google Scholar 

  • Kono H., Yunoki S., Shikano T., Fujiwara M., Erata T. and Takai M. (2002). CP/MAS 13C NMR study of cellulose and cellulose derivatives. 1. Complete assignment of the CP/MAS 13C NMR spectrum of the native cellulose. J. Am. Chem. Soc. 124:7506–7511

    Article  CAS  Google Scholar 

  • Kono H., Erata T. and Takai M. (2003a). Complete assignment of the CP/MAS 13C NMR spectrum of the cellulose IIII. Macromolecules 36:3589–3592

    Article  CAS  Google Scholar 

  • Kono H., Erata T. and Takai M. (2003b). Determination of through-bond carbon-carbon and carbon-proton connectivities of the native celluloses in the solid state. Macromolecules 36:5131–5138

    Article  CAS  Google Scholar 

  • Kono H., Numata Y., Erata T. and Takai M. (2004). 13C and 1H Resonance assignment of mercerized cellulose II by two-dimensional MAS NMR spectroscopies. Macromolecules 37:5310–5316

    Article  CAS  Google Scholar 

  • Kono H. and Numata Y. (2004). Two-dimensional spin-exchange solid-state NMR studies of 13C-enriched cellulose II. Polymer 45:2843–2852

    Article  CAS  Google Scholar 

  • Lesage A., Sakellariou D., Steuernagel S. and Emsley L. (1998). Carbon-proton chemical shift correlation in solid-state NMR by through-bond multiple-quantum spectroscopy. J. Am. Chem. Soc. 120:13194–13201

    Article  CAS  Google Scholar 

  • Lesage A., Bardet M. and Emsley L. (1999). Through-bond carbon-carbon connectivities in disordered solids by NMR. J. Am. Chem. Soc. 121:10987–10993

    Article  CAS  Google Scholar 

  • Marion D. and Wüthrich K. (1983). Application of phase sensitive two-dimensional correlated spectroscopy (COSY) for measurements of 1H−1H spin–spin coupling constants in proteins. Biochem. Biophys. Res. Commun. 113:967–974

    Article  CAS  Google Scholar 

  • Metz G., Wu X. and Smith S.O. (1994). Ramped-amplitude cross polarization in magic-angle-spinning NMR. J. Magn. Reson. A 110:219–227

    Article  CAS  Google Scholar 

  • Mueller L. (1979). Sensitivity enhanced detection of weak nuclei using heteronuclear multiple quantum coherence. J. Am. Chem. Soc. 101:4481–4484

    Article  CAS  Google Scholar 

  • Nishiyama Y., Langan P. and Chanzy H. (2002). Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J. Am. Chem. Soc. 124:9074–9082

    Article  CAS  Google Scholar 

  • Nishiyama Y., Sugiyama J., Chanzy H. and Langan P. (2003). Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J. Am. Chem. Soc. 125:14300–14306

    Article  CAS  Google Scholar 

  • Numata Y., Kono H., Kawano S., Erata T. and Takai M. (2003). Cross-polarization/magic-angle spinning 13C nuclear magnetic resonance study of cellulose I–ethylenediamine complex. J. Biosci. Bioeng. 96:461–466

    CAS  Google Scholar 

  • Sarko A. and Muggli R. (1974). Packing analysis of carbohydrates and polysaccharides III. Valonia cellulose and cellulose II. Macromolecules 7:486–494

    Article  CAS  Google Scholar 

  • Shramm M. and Hestrin S. (1954). Factors affecting production of cellulose at the air/liquid interface of a culture of Acetobacter xylinum. J. Gen. Microbiol. 11:123–129

    Google Scholar 

  • Sugiyama J., Okano T., Yamamoto H. and Horii F. (1990). Transformation of Valonia cellulose crystals by an alkaline hydrothermal treatment. Macromolecules 23:3196–3198

    Article  CAS  Google Scholar 

  • Sugiyama J., Persson J. and Chanzy H. (1991a). Combined infrared and electron diffraction study of the polymorphism of native celluloses. Macromolecules 24:2461–2466

    Article  CAS  Google Scholar 

  • Sugiyama J., Vuong R. and Chanzy H. (1991b). Electron diffraction study on the two crystalline phases occurring in native cellulose from an algal cell wall. Macromolecules 24:4168–4175

    Article  CAS  Google Scholar 

  • VanderHart D.L. and Atalla R.H. (1984). Studies of microstructure in native celluloses using solid-state 13C NMR. Macromolecules 17:1465–1472

    Article  CAS  Google Scholar 

  • Yamamoto H. and Horii F. (1993). CP/MAS 13C NMR analysis of the crystal transformation induced Valonia cellulose by annealing at high temperatures. Macromolecules 26:1313–1317

    Article  CAS  Google Scholar 

  • Yunoki S., Osada Y., Kono H. and Takai M. (2004). Role of ethanol in improvement of bacterial cellulose production: analysis using 13C-labeled carbon sources. Food Sci. Technol. Res. 10:307–313

    Article  CAS  Google Scholar 

  • Zugenmaier P. (2001). Conformation and packing of various crystalline cellulose fibers. Prog. Polym. Sci. 26:1341–1417

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank Prof. Dr. T. Erata and Prof. Dr. M. Takai (Hokkaido University) for preparing cellulose samples. In addition, H. Kono thanks Prof. Dr. F. Horii (Kyoto University) for helpful discussions and carefully checking the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Kono.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kono, H., Numata, Y. Structural investigation of cellulose Iα and Iβ by 2D RFDR NMR spectroscopy: determination of sequence of magnetically inequivalent d-glucose units along cellulose chain. Cellulose 13, 317–326 (2006). https://doi.org/10.1007/s10570-005-9025-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-005-9025-0

Keywords

Navigation