Skip to main content

Advertisement

Log in

Direct observation of cellulose dissolution in subcritical and supercritical water over a wide range of water densities (550–1000 kg/m3)

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Direct observations of the heating of microcrystalline cellulose (230 DP) in water at temperatures up to 410 °C and at pressures up to 700 MPa were made with a batch-type microreactor. Cellulose particles were found to dissolve with water over temperatures ranging from 315 to 355 °C at high pressures. Dissolution temperatures depended on water density and decreased from about 350 °C at a water density of 560 kg/m3 to a minimum of around 320 °C at a water density of 850 kg/m3. At densities greater than 850 kg/m3, the dissolution temperatures increased and reached a value of about 347 °C at 980 kg/m3. The cellulose dissolution temperatures were independent of heating rates for values ranging from 10 to 17 °C/s. The low dependence of dissolution temperatures on the heating rates is strong evidence for simultaneous dissolution and reaction of the cellulose. Different phenomena occurred depending on water density. At low densities, particles turned transparent and seemed to dissolve into the aqueous phase from the surface. From 670 to 850 kg/m3, the cellulose particles visibly swelled just before completely collapsing and dissolving into the aqueous phase. The swelling probably increased water accessibility and particle surface area and thus lead to the lower dissolution temperatures observed. From 850 to 1000 kg/m3, the particles required longer times to dissolve and many fine brown-like particles were generated as the particles dissolved. FT-IR spectra of the residues were analyzed. Residues formed from heating cellulose at high densities still retained some cellulose character whereas those as low densities had little cellulose character, especially in the O–H stretching vibration region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aarts D.G.A.L., Schmidt M., Lekkerkerker H.N.W. (2004) Direct Visual Observation of Thermal Capillary Waves. Science 7: 847–850

    Article  CAS  Google Scholar 

  • Adschiri T., Hirose S., Malaluan R., Arai K. (1993) Noncatalytic conversion of cellulose in supercritical and subcritical water. J. Chem. Eng. Japan 26: 676–680

    Article  CAS  Google Scholar 

  • Antal M. J., Allen S.G., Schulman D., Xu X.D., Divilio R.J., 2000. Biomass gasification in supercritical water, Ind. Eng. Chem. Res. 39: 4040--4053

    Google Scholar 

  • Arai K., Adschiri T. (1999) Importance of phase equilibria for understanding supercritical fluid environments. Fluid Phase Equilibria 158–160: 673–684

    Article  Google Scholar 

  • Audetat A., Keppler H. (2004) Viscosity of fluids in subduction zones. Science 303: 513–516

    Article  PubMed  CAS  Google Scholar 

  • Bassett W.A., Shen A.H., Bucknum M., Chou I.M. (1993). A new diamond-anvil cell for hydrothermal studies to 2.5 GPa and from −190 to 1200 °C. Rev. Sci. Instrum. 64: 2340–2345

    Article  Google Scholar 

  • Bobleter O. (1994) Hydrothermal degradation of polymers derived from plants. Prog. Polymer. Sci. 19: 797–841

    Article  CAS  Google Scholar 

  • Ehara K., Saka S. (2002) A comparative study on chemical conversion of cellulose between the batch-type and flow-type systems in supercritical water. Cellulose 9: 301–311

    Article  CAS  Google Scholar 

  • Fang Z., Minowa T, Smith R.L., Ogi T., Kozinski J.A. (2004) Liquefaction and gasification of cellulose with Na2CO3 and Ni in subcritical water at 350°C. Ind. Eng. Chem. Res. 43: 2454–2463

    Article  CAS  Google Scholar 

  • Fang Z., Smith Jr. R.L., Inomata H., Arai K. (1999) Phase behavior and reaction of polyethylene terephthalate-water systems at pressures up to 173 MPa and temperatures up to 490°C. J Supercritical Fluids 15: 229–243

    Article  CAS  Google Scholar 

  • Fang Z., Smith R.L., Inomata H., Arai K. 2000. Phase behaviour and reaction of polyethylene in supercritical water at pressures up to 2.6 Gpa and temperatures up to 670 °C. J.␣Supercrit. Fluids 16: 207--216

    Google Scholar 

  • Feng W., van der Kooi H.J., de Swaan Arons J. (2004) Biomass conversions in subcritical and supercritical water: driving force, phase equilibria, and thermodynamic analysis. Chem. Eng. Proc. 43: 1459–1467

    Article  CAS  Google Scholar 

  • Feng W., van der Kooi H.J., de Swaan Arons J. (2004). Phase equilibria for biomass conversion processes in subcritical and supercritical water. Chem. Eng. J. 98: 105–113

    Article  CAS  Google Scholar 

  • Fernández-Prini R. and Dooley R.B. 1997. The International Association for the Properties of Water and Steam, Erlangen, Germany, September, Release on the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam. (http://www.iapws.org/)

  • Goto M., Obuchi R., Hirose T., Sakaki T., Shibata M. (2004) Hydrothermal conversion of municipal organic waste into resources. Bioresour. Technol. 93: 279–284

    Article  PubMed  CAS  Google Scholar 

  • Ito T., Hirata Y., Sawa F., Shirakawa N. (2002) Hydrogen bond and crystal deformation of cellulose in sub/super-critical water. Jpn. J. Appl. Phys. 41: 5809–5814

    Article  CAS  Google Scholar 

  • Laser M., Schulman D., Allen S.G.,. Lichwa J., Antal Jr. M.J., Lynd L.R. (2002). A comparison of liquid hot water and steam pretreatments of sugar cane bagasse for bioconversion to ethanol. Bioresour. Technol. 81: 33–44

    Article  PubMed  CAS  Google Scholar 

  • Luijkx G.C.A., van Rantwijk F., van Bekkum H., Antal Jr M.J. (1995) The role of deoxyhexonic acids in the hydrothermal decarboxylation of carbohydrates. Carbohydr. Res. 272: 191–202

    Article  PubMed  CAS  Google Scholar 

  • Maruyama M. 2005. Roughening transition of prism faces of ice crystals grown from melt under pressure. J. Cryst. Growth 275: 598--605.

    Google Scholar 

  • Mazzobre, M.F., Aguilera J.M. and Buera M.P. 2003. Microscopy and calorimetry as complementary techniques to analyze sugar crystallization from amorphous systems. Carbohydr. Res. 338: 541--548

    Google Scholar 

  • Michael M., Ibbett R.N., Howarth O.W. 2000. Interaction of cellulose with amine oxide solvents. Cellulose 7: 21--33

    Google Scholar 

  • Modell M. (1977) Reforming of Glucose And Wood At Critical Conditions Of Water. Mech. Eng. 99: 108–108

    Google Scholar 

  • OSullivan A.C. (1997) Cellulose: the structure slowly unravels. Cellulose 4: 173–207

    Article  CAS  Google Scholar 

  • Saka S., Ueno T. (1999) Chemical conversion of various celluloses to glucose and its derivatives in supercritical water. Cellulose 6: 177–191

    Article  CAS  Google Scholar 

  • Sakaki T., Shibata M., Sumi T., Yasuda S. (2002) Saccharification of cellulose using a hot-compressed water-flow reactor. Ind. Eng. Chem. Res. 41: 661–665

    Article  CAS  Google Scholar 

  • Sasaki M., Kabyemela B., Malaluan R.M., Hirose S., Takeda N., Adschiri T., Arai K. (1998). Cellulose hydrolysis in subcritical and supercritical water. J. Supercritical Fluids 13: 261–268

    Article  CAS  Google Scholar 

  • Sasaki M., Fang Z., Fukushima Y., Adschiri T., Arai K. (2000) Dissolution and Hydrolysis of Cellulose in Subcritical and Supercritical Water. Ind. Eng. Chem. Res. 39: 2883–2890

    Article  CAS  Google Scholar 

  • Sasaki M., Furukawa M., Minami K., Adschiri T., Arai K. (2002) Kinetics and mechanism of cellobiose hydrolysis and retro-Aldol condensation in subcritical and supercritical water. Ind. Eng. Chem. Res. 41: 6642–6649

    Article  CAS  Google Scholar 

  • Sasaki M., Adschiri T., Arai K. (2003a). Production of cellulose II from native cellulose by near- and supercritical water solubilization. J. Agric. Food Chem. 51: 5376–5381

    Article  CAS  Google Scholar 

  • Sasaki M., Adschiri T., Arai K. (2003b) Fractionation of sugarcane bagasse by hydrothermal treatment. Bioresour. Technol. 86: 301–304

    Article  Google Scholar 

  • Sasaki M., Adschiri T., Arai K. (2004). Kinetics of cellulose conversion at 25 MPa in sub- and Supercritical water. AIChE J. 50: 192–202

    Article  CAS  Google Scholar 

  • Scott H.P., Hemley R.J., Mao H.K., Herschbach D.R., Fried L.E., Howard W.M., Bastea S. 2004. Generation of methane in the Earth's mantle: In situ high pressure-temperature measurements of carbonate reduction. Proc. Natl. Acad. Sci. 101: 14023--14026

    Google Scholar 

  • Shen A.H., Keppler H. (1997). Direct observation of complete miscibility in the albite-H2O system. Nature 385: 710–712

    Article  CAS  Google Scholar 

  • Smith Jr. R.L., Fang Z., Inomata H., Arai K. (1999). Phase behavior and reaction of nylon 6/6 in water at high temperatures and pressures. J. Appl. Polym. Sci. 76: 1062–1073

    Article  Google Scholar 

  • Wagner W., Pruss A. (2002). The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. J. Phys. Chem. Ref. Data 31: 387–535

    Article  CAS  Google Scholar 

  • Wang H.M., Henderson G.S., Brenan J.M. (2004) Measuring quartz solubility by in situ weight-loss determination using a hydrothermal diamond cell. Geochim. Cosmochim. Acta 68: 5197–5204

    Article  CAS  Google Scholar 

  • Qu Y., Wei X., Zhong C. (2003). Experimental study on the direct liquefaction of Cunninghamia lanceolata in water. Energy 28: 597–606

    Article  CAS  Google Scholar 

  • Zhbankov R.G., Firsov S.P., Buslov D.K., Nikonenko N.A., Marchewka M.K., Ratajczak H. (2002). Structural physico-chemistry of cellulose macromolecules. Vibrational spectra and structure of cellulose. J. Mol. Struct. 614: 117–125

    Article  CAS  Google Scholar 

  • Zhong C., Peters C.J., de Swaan Arons J. (2002) Thermodynamic modeling of biomass conversion processes. Fluid Phase Equilib. 194–197: 805–815

    Article  Google Scholar 

  • Zugenmaier P. 2001. Conformation and packing of various crystalline cellulose fibers Prog. Polym. Sci. 26: 1341--1417

    Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge the Ministry of Education, Science, Sports and Culture for partial financial support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard L. Smith Jr..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ogihara, Y., Smith, R.L., Inomata, H. et al. Direct observation of cellulose dissolution in subcritical and supercritical water over a wide range of water densities (550–1000 kg/m3). Cellulose 12, 595–606 (2005). https://doi.org/10.1007/s10570-005-9008-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-005-9008-1

Key words

Navigation