Skip to main content

Advertisement

Log in

Disassociation energies for the finite-density N-body problem

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

This paper considers the energy required for collections of finite-density bodies to undergo escape under internal gravitational interactions alone. As the level of the system energy is increased, there are different combinations of components that can escape, until the total energy becomes positive, when the entire system can undergo mutual disruption. The results are also defined for bodies modeled as a continuum. These results provide rigorous constraints for the disruption of rubble-pile asteroids when only considering gravitational interaction effects, with the energy provided by rotation of an initial collection of the system. These issues are considered for discrete particles in the N-body problem and for size distributions of discrete particles in the continuum limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andrews, G.E.: The Theory of Partitions. Number 2. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  • Berend, D., Tassa, T.: Improved bounds on bell numbers and on moments of sums of random variables. Probab. Math. Stat. 30(2), 185–205 (2010)

    MathSciNet  MATH  Google Scholar 

  • Hirabayashi, M., Scheeres, D.J.: Stress and failure analysis of rapidly rotating asteroid (29075) 1950 DA. Astrophys. J. Lett. 798(1), L8 (2015)

    Article  ADS  Google Scholar 

  • Holsapple, K.A.: Equilibrium configurations of solid cohesionless bodies. Icarus 154(2), 432–448 (2001)

    Article  ADS  Google Scholar 

  • Michikami, T., Nakamura, A.M., Hirata, N., Gaskell, R.W., Nakamura, R., Honda, T., et al.: Size-frequency statistics of boulders on global surface of asteroid 25143 Itokawa. Earth Planets Space 60(1), 13–20 (2008)

    Article  ADS  Google Scholar 

  • Moeckel, R.: Minimal energy configurations of gravitationally interacting rigid bodies. Celest. Mech. Dyn. Astron. 128(1), 3–18 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  • Moeckel, R.: Counting relative equilibrium configurations of the full two-body problem. Celest. Mech. Dyn. Astron. 130(2), 17 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  • Pravec, P., Fatka, P., Vokrouhlický, D., Scheeres, D.J., Kušnirák, P., Hornoch, K., et al.: Asteroid clusters similar to asteroid pairs. Icarus 304, 110–126 (2018). (Asteroids and Space Debris)

    Article  ADS  Google Scholar 

  • Pravec, P., Vokrouhlický, D., Polishook, D., Scheeres, D.J., Harris, A.W., Galád, A., et al.: Formation of asteroid pairs by rotational fission. Nature 466(7310), 1085–1088 (2010)

    Article  ADS  Google Scholar 

  • Sánchez, P., Scheeres, D.J.: The strength of regolith and rubble pile asteroids. Meteorit. Planet. Sci. 49(5), 788–811 (2014)

    Article  ADS  Google Scholar 

  • Scheeres, D.J.: Stability in the full two-body problem. Celest. Mech. Dyn. Astron. 83(1), 155–169 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  • Scheeres, D.J.: Rotational fission of contact binary asteroids. Icarus 189(2), 370–385 (2007)

    Article  ADS  Google Scholar 

  • Scheeres, D.J.: Minimum energy configurations in the \(N\)-body problem and the celestial mechanics of granular systems. Celest. Mech. Dyn. Astron. 113(3), 291–320 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  • Scheeres, D.J.: Relative equilibria in the full \(N\)-body problem with applications to the equal mass problem. In: Recent Advances in Celestial and Space Mechanics, pp. 31–81. Springer (2016a)

  • Scheeres, D.J.: Relative equilibria in the spherical, finite density three-body problem. J. Nonlinear Sci. 26(5), 1445–1482 (2016b)

    Article  ADS  MathSciNet  Google Scholar 

  • Tsuchiyama, A., Uesugi, M., Matsushima, T., Michikami, T., Kadono, T., Nakamura, T., et al.: Three-dimensional structure of Hayabusa samples: origin and evolution of Itokawa Regolith. Science 333(6046), 1125–1128 (2011)

    Article  ADS  Google Scholar 

  • Vokrouhlicky, D., Bottke, W.F., Chesley, S.R., Scheeres, D.J., Statler, T.S.: The Yarkovsky and YORP Effects. Asteroids IV. Univ. Arizona Press, Tucson (2015)

    Google Scholar 

Download references

Acknowledgements

The author appreciates the comments of the two reviewers, which have helped to greatly improve this paper.

Funding

Funding was provided by National Aeronautics and Space Administration (Grant No. 80NSSC18K0491).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. J. Scheeres.

Ethics declarations

Conflict of interest

The author declares that no conflict of interest exists with the research reported herein.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection on 50 years of Celestial Mechanics and Dynamical Astronomy.

Guest Editors: Editorial Committee.

Appendix: Size distribution functions

Appendix: Size distribution functions

Consider a cumulative size distribution of the form \(\mathcal{N}_{\alpha }(r) = \frac{A_\alpha }{r^\alpha }\) for \(2 \le \alpha \le 3\). Associated with this distribution is a maximum and minimum grain radius, \(r_1\) and \(r_0\), respectively. The function \(\mathcal{N}_{\alpha }(r)\) is the cumulative number of particles with radius between r and the maximum size \(r_1\). The term \(A_\alpha \) is initially chosen to agree with the observed number of largest boulders, \(\mathcal{N}_1\), such that \(\mathcal{N}_{\alpha }(r_1)=\mathcal{N}_1\). With this interpretation, the nominal form for the function is:

$$\begin{aligned} \mathcal{N}_{\alpha }(r)= & {} \mathcal{N}_1 \left( \frac{r_1}{r}\right) ^\alpha . \end{aligned}$$
(30)

The cumulative distribution is the integral of a cumulative density function \(n_\alpha (r)\), defined as:

$$\begin{aligned} \mathcal{N}_{\alpha }(r)= & {} \int _{r}^{r_1} n_\alpha (r) \ \hbox {d}r. \end{aligned}$$
(31)

This definition establishes that \(n_\alpha (r) = - \frac{d\mathcal{N}_{\alpha }}{\hbox {d}r}\), leading to the cumulative density function

$$\begin{aligned} n_\alpha (r)= & {} \frac{\alpha \mathcal{N}_1 \ r_1^\alpha }{r^{\alpha +1}}. \end{aligned}$$
(32)

A density distribution function that integrates to unity can also be defined, denoted as \(\bar{n}_\alpha (r)\):

$$\begin{aligned} \bar{n}_\alpha (r)= & {} \frac{n_\alpha (r)}{\int _{r_0}^{r_1} n_\alpha (r) \ \hbox {d}r}. \end{aligned}$$
(33)

Carrying out this computation yields

$$\begin{aligned} \bar{n}_\alpha (r)= & {} \frac{\alpha r_1^\alpha r_0^\alpha }{(r_1^\alpha - r_0^\alpha ) r^{\alpha +1}}. \end{aligned}$$
(34)

There are several quantities of interest that can be defined and calculated with a power law size distribution. A few of them are reviewed here, in addition to stating some key results used in the paper.

Mean grain radius The mean grain radius is defined as

$$\begin{aligned} \bar{r}= & {} \int _{r_0}^{r_1} r \bar{n}_\alpha (r) \ \hbox {d}r \end{aligned}$$
(35)
$$\begin{aligned}= & {} \frac{\alpha r_1 r_0}{\alpha -1}\frac{ r_1^{\alpha -1} - r_0^{\alpha -1}}{r_1^\alpha - r_0^\alpha }. \end{aligned}$$
(36)

Thus, if \(r_0 \ll r_1\), the mean radius is \(\bar{r} \sim \frac{\alpha }{\alpha -1} r_0\).

Surface area of grains The total surface area of a collection of grains is computed as

$$\begin{aligned} {SA}_T= & {} \int _{r_0}^{r_1} 4\pi r^2 {n_\alpha }(r) \ \hbox {d}r \end{aligned}$$
(37)
$$\begin{aligned}= & {} 4\pi \mathcal{N}_1 \alpha r_1^\alpha \int _{r_0}^{r_1} r^{1-\alpha } \hbox {d}r. \end{aligned}$$
(38)

If \(2 < \alpha \le 3\), this can be integrated to find

$$\begin{aligned} {SA}_T= & {} \frac{4\pi \mathcal{N}_1 \alpha }{\alpha -2} r_1^2 \left[ \left( \frac{r_1}{r_0}\right) ^{\alpha -2} - 1\right] , \end{aligned}$$
(39)

and if \(\alpha = 2\), the total surface area equals

$$\begin{aligned} {SA}_T= & {} 8\pi \mathcal{N}_1 r_1^2 \ln \left( \frac{r_1}{r_0}\right) . \end{aligned}$$
(40)

For either case, if \(r_0 \ll r_1\), the total surface area becomes arbitrarily large.

Volume of grains The total volume of grains can be found by

$$\begin{aligned} {V}_T= & {} \int _{r_0}^{r_1} \frac{4\pi }{3} r^3 {n_\alpha }(r) \ \hbox {d}r \end{aligned}$$
(41)
$$\begin{aligned}= & {} \frac{4\pi \ \alpha \mathcal{N}_1 }{3} r_1^\alpha \int _{r_0}^{r_1} r^{2-\alpha } \ \hbox {d}r. \end{aligned}$$
(42)

If \(2 \le \alpha < 3\), the total volume equals

$$\begin{aligned} {V}_T= & {} \frac{4\pi }{3} \frac{\alpha \mathcal{N}_1 r_1^3}{3-\alpha } \left[ 1 - \left( \frac{r_0}{r_1}\right) ^{3-\alpha }\right] . \end{aligned}$$
(43)

If \(\alpha = 3\), the total volume equals

$$\begin{aligned} {V}_T= & {} 4\pi \mathcal{N}_1 r_1^3 \ln \left( \frac{r_1}{r_0}\right) . \end{aligned}$$
(44)

For \(\alpha < 3\), one can take the limit \(r_0\rightarrow \infty \) without any singularity. For \(\alpha =3\), however, this leads to an infinite mass.

Total self-potential Finally, the total self-potential of a size distribution, assuming spherical grains, is computed as

$$\begin{aligned} \mathcal{U}_\mathrm{Self}= & {} -\frac{3\mathcal{G}}{5} \left( \frac{4\pi \rho _g}{3}\right) ^2 \int _{r_0}^{r_1} r^5 n_\alpha (r) \ \hbox {d}r \end{aligned}$$
(45)
$$\begin{aligned}= & {} -\frac{3\mathcal{G}}{5} \left( \frac{4\pi \rho _g}{3}\right) ^2 {\alpha \mathcal{N}_1 r_1^\alpha } \int _{r_0}^{r_1} r^{4-\alpha } \ \hbox {d}r. \end{aligned}$$
(46)

The integral is defined for the whole interval of \(2\le \alpha \le 3\), yielding

$$\begin{aligned} \mathcal{U}_\mathrm{Self}= & {} -\frac{3\mathcal{G}}{5} \left( \frac{4\pi \rho _g}{3}\right) ^2 \frac{\alpha \mathcal{N}_1 r_1^5}{5-\alpha } \left[ 1 - \left( \frac{r_0}{r_1}\right) ^{5-\alpha }\right] . \end{aligned}$$
(47)

Across the entire interval, the limit \(r_0\rightarrow 0\) can be taken.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scheeres, D.J. Disassociation energies for the finite-density N-body problem. Celest Mech Dyn Astr 132, 4 (2020). https://doi.org/10.1007/s10569-019-9945-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10569-019-9945-x

Keywords

Navigation