Skip to main content
Log in

Phase correlations in chaotic dynamics: a Shannon entropy measure

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

In the present work, we investigate phase correlations by recourse to the Shannon entropy. Using theoretical arguments, we show that the entropy provides an accurate measure of phase correlations in any dynamical system, in particular when dealing with a chaotic diffusion process. We apply this approach to different low-dimensional maps in order to show that indeed the entropy is very sensitive to the presence of correlations among the successive values of angular variables, even when it is weak. Later on, we apply this approach to unveil strong correlations in the time evolution of the phases involved in the Arnold’s Hamiltonian that lead to anomalous diffusion, particularly when the perturbation parameters are comparatively large. The obtained results allow us to discuss the validity of several approximations and assumptions usually introduced to derive a local diffusion coefficient in multidimensional near-integrable Hamiltonian systems, in particular the so-called reduced stochasticity approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. By weak chaos we mean the dynamical state when the unstable chaotic motion is mostly confined to the narrow stochastic layers around resonances.

  2. In fact, the dynamical system could involve more than one action and phase.

  3. See the discussion below.

  4. This could occur due to the smallness of the time step.

References

  • Arnold, V.I.: On the nonstability of dynamical systems with many degrees of freedom. Sov. Math. Dokl. 5, 581–585 (1964)

    Google Scholar 

  • Arnol’d, V., Avez, A.: Ergodic Problems of Classical Mechanics, 2nd edn. Addison-Wesley, New York (1989)

    MATH  Google Scholar 

  • Berne, B.J., Harp, G.D.: On the calculation of time correlation functions. In: Prigogine, I., Rice, S.A. (eds.) Advance in Chemical Physics, vol. XVII, pp. 64–227, Wiley (1970)

  • Chirikov, B.V.: Institute of Nuclear Physics, Novosibirsk (in Russian). Preprint 267, (1969), Engl. Transl., CERN Trans. 71-40, Geneva, October (1971)

  • Chirikov, B.V.: A Universal instability of many-dimensional oscillator systems. Phys. Rep. 52, 263 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  • Cincotta, P.M.: Astronomical time-series analysis-III. The role of the observational errors in the minimum entropy method. Mon. Not. R. Astron. Soc. 307, 941 (1999)

    Article  ADS  Google Scholar 

  • Cincotta, P.M.: Arnold diffusion: an overview through dynamical astronomy. New Astron. Rev. 46, 13–39 (2002)

    Article  ADS  Google Scholar 

  • Cincotta, P.M., Helmi, A., Méndez, M., Núñez, J.A., Vucetich, H.: Astronomical time-series analysis-II. A search for periodicity using the Shannon entropy. Mon. Not. R. Astron. Soc. 302, 582 (1999)

    Article  ADS  Google Scholar 

  • Cincotta, P.M., Efthymiopoulos, C., Giordano, C.M., Mestre, M.F.: Chirikov and Nekhoroshev diffusion estimates: bridging the two sides of the river. Physica D 266, 49 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  • Cincotta, P.M., Giordano, C.M., Martí, J.G., Beaugé, C.: On the chaotic diffusion in multidimensional Hamiltonian systems. Celest. Mech. Dyn. Astron. 130, 7 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  • Chandler, D.: Introduction to Modern Statistical Mechanics. Oxford University Press, New York (1987)

    Google Scholar 

  • Efthymiopoulos, C., Harsoula, M.: The speed of Arnold diffusion. Physica D 251, 19 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  • Froeschlé, C., Guzzo, M., Lega, E.: Local and global diffusion along resonant lines in discrete quasi-integrable dynamical systems. Celest. Mech. Dyn. Astron. 92, 243 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  • Froeschlé, C., Lega, E., Guzzo, M.: Analysis of the chaotic behavior of orbits diffusing along the Arnold web. Celest. Mech. Dyn. Astron. 95, 141 (2006)

    Article  ADS  Google Scholar 

  • Giordano, C.M., Cincotta, P.M.: The Shannon entropy as a measure of diffusion in multidimensional dynamical systems. CMDA 130, 35 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  • Guzzo, M., Lega, E., Froechlé, C.: First numerical evidence of global Arnold diffusion in quasi-integrable systems. Discrete Contin. Dyn. Syst. B 5, 687 (2005)

    Article  MathSciNet  Google Scholar 

  • Katz, A.: Principles of Statistical Mechanics. The Information Theory Approach. W.H. Freeman & Co., San Francisco (1967)

    Google Scholar 

  • Klafter, J., Blumen, A., Zumofen, G., Shlesinger, M.: Lévy walk approach to anomalous diffusion. Physica A 168, 637 (1990)

    Article  ADS  Google Scholar 

  • Klafter, J., Zumofen, G., Shlesinger, M.: Lévy walks in dynamical systems. Physica A 200, 222 (1993)

    Article  ADS  Google Scholar 

  • Korabel, N., Klages, R.: Microscopic chaos and transport in many-particle systems. Physica D 187, 66 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  • Lega, E., Froeschlé, C.: Guzzo, Diffusion in Hamiltonian quasi-integrable systems. Lect. Notes Phys. 729, 29 (2008)

    Article  ADS  Google Scholar 

  • Lega, E., Guzzo, M., Froeschlé, C.: Detection of Arnold diffusion in Hamiltonian systems. Physica D 182, 179 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  • Lesne, A.: Shannon entropy: a rigorous notion at the crossroads between probability, information theory, dynamical systems and statistical physics. Math. Struct. Comput. Sci. 24, e240311 (2014). https://doi.org/10.1017/S0960129512000783

    Article  MathSciNet  MATH  Google Scholar 

  • Maffione, N.P., Gómez, F.A., Cincotta, P.M., Giordano, C.M., Cooper, A.P., O’Shea, B.W.: On the relevance of chaos for halo stars in the solar neighbourhood. Mon. Not. R. Astron. Soc. 453, 2830 (2015)

    Article  ADS  Google Scholar 

  • Maffione, N.P., Gómez, F.A., Cincotta, P.M., Giordano, C.M., Grand, R., Marinacci, F., Pakmor, R., Simpson, C., Springel, V., Frenk, C.: On the relevance of chaos for halo stars in the solar neighbourhood II. Mon. Not. R. Astron. Soc. 478, 4052 (2018)

    Article  ADS  Google Scholar 

  • Martí, J.G., Cincotta, P.M., Beaugé, C.: Chaotic diffusion in the Gliese-876 planetary system. Mon. Not. R. Astron. Soc. 460, 1094 (2016)

    Article  ADS  Google Scholar 

  • Miguel, N., Simó, C., Vieiro, A.: On the effect of islands in the diffusive properties of the standard map, for large parameter values. Found. Comput. Math. 15, 89 (2014)

    Article  MathSciNet  Google Scholar 

  • Reichl, L.E.: A Modern Course in Statistical Physics. Wiley-Interscience, New York (1998)

    MATH  Google Scholar 

  • Shannon, C., Weaver, W.: The Mathematical Theory of Communication. Illinois U.P., Urbana (1949)

    MATH  Google Scholar 

  • Schwarzl, M., Godec, A., Metzler, R.: Quantifying non-ergodicity of anomalous diffusion with higher order moments. Sci. Rep. 7 (2017). https://doi.org/10.1038/s41598-017-03712-x

  • Venegeroles, R.: Calculation of superdiffusion for the Chirikov–Taylor model. Phys. Rev. Lett. 101, 54102 (2008)

    Article  ADS  Google Scholar 

  • Wehrl, A.: General properties of entropy. Rev. Mod. Phys. 50, 2–221 (1978)

    Article  MathSciNet  Google Scholar 

  • Zaslavsky, G.M.: Fractional kinetic equation for Hamiltonian chaos. Physica D 76, 110 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  • Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Phys. Rep. 371, 461 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  • Zaslavsky, G.M., Abdullaev, S.S.: Scaling properties and anomalous transport of particles inside the stochastic layer. Phys. Rev. E 51, 3901 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  • Zaslavsky, G.M., Edelman, M.: Hierarchical structures in the phase space and fractional kinetics: I. Classical systems. Chaos 10, 135 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  • Zaslavsky, G.M., Niyazow, B.A.: Fractional kinetics and accelerator modes. Phys. Rep. 283, 73 (1997)

    Article  ADS  Google Scholar 

  • Zaslavsky, G.M., Edelman, M., Niyazow, B.A.: Self-similarity, renormalization, and phase space nonuniformity of Hamiltonian chaotic dynamics. Chaos 7, 159 (1997)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants from Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina (CONICET), the Universidad Nacional de La Plata and Instituto de Astrofísica de La Plata. We acknowledge two anonymous reviewers for their valuable comments and suggestions that allow us to improve this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. M. Cincotta.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cincotta, P.M., Giordano, C.M. Phase correlations in chaotic dynamics: a Shannon entropy measure. Celest Mech Dyn Astr 130, 74 (2018). https://doi.org/10.1007/s10569-018-9871-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10569-018-9871-3

Keywords

Navigation