Skip to main content
Log in

Addressing some critical aspects of the BepiColombo MORE relativity experiment

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

The Mercury Orbiter Radio science Experiment (MORE) is one of the experiments on-board the ESA/JAXA BepiColombo mission to Mercury, to be launched in October 2018. Thanks to full on-board and on-ground instrumentation performing very precise tracking from the Earth, MORE will have the chance to determine with very high accuracy the Mercury-centric orbit of the spacecraft and the heliocentric orbit of Mercury. This will allow to undertake an accurate test of relativistic theories of gravitation (relativity experiment), which consists in improving the knowledge of some post-Newtonian and related parameters, whose value is predicted by General Relativity. This paper focuses on two critical aspects of the BepiColombo relativity experiment. First of all, we address the delicate issue of determining the orbits of Mercury and the Earth–Moon barycenter at the level of accuracy required by the purposes of the experiment and we discuss a strategy to cure the rank deficiencies that appear in the problem. Secondly, we introduce and discuss the role of the Solar Lense–Thirring effect in the Mercury orbit determination problem and in the relativistic parameters estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. The strategy adopted in our orbit determination code is to determine the EMB orbit instead of the Earth orbit.

  2. There are accurate definitions of the time scales based upon atomic clocks.

  3. Under an Italian Space Agency commission.

  4. Two additional parameters to estimate a possible bias and rate over time in the range observations can be added to the solve-for list to avoid biasing in the solution due to systematic errors in ranging.

  5. Strategy I has been adopted until now for the MORE relativity experiment.

  6. For the definition of observed arc see, e.g., Cicalò (2016).

  7. The nominal value of \(J_{2\odot }\) in simulation has been set to \(2.0\times 10^{-7}\).

  8. From helioseismology, the angular momentum of the Sun can be constrained significantly better than the 10% level (see, e.g., Pijpers 1998), thus our assumption is fully acceptable and is consistent with what done in Park (2017).

References

  • Alessi, E.M., Cicaló, S., Milani, A., Tommei, G.: Desaturation manoeuvers and precise orbit determination for the BepiColombo mission. Mon. Not. R. Astron. Soc. 423, 2270–2278 (2012)

    Article  ADS  Google Scholar 

  • Ashby, N., Bender, P.L., Wahr, J.M.: Future gravitational physics tests from ranging to the BepiColombo Mercury planetary orbiter. Phys. Rev. D 75, 022001 (2007)

    Article  ADS  Google Scholar 

  • Benkhoff, J.: BepiColombo—comprehensive exploration of Mercury: mission overview and science goals. Planet. Space Sci. 58, 2–10 (2010)

    Article  ADS  Google Scholar 

  • Bertotti, B., Iess, L., Tortora, P.: A test of general relativity using radio links with the Cassini spacecraft. Nature 425, 374–376 (2003)

    Article  ADS  Google Scholar 

  • Barros, A., Romero, C.: Gravitomagnetic time delay and the Lense–Thirring effect in Brans–Dicke theory of gravity. Mod. Phys. Lett. A 18, 2117–2124 (2003)

    Article  ADS  Google Scholar 

  • Cicalò, S., Milani, A.: Determination of the rotation of Mercury from satellite gravimetry. Mon. Not. R. Astron. Soc. 427, 468–482 (2012)

    Article  ADS  Google Scholar 

  • Cicalò, S., et al.: The BepiColombo MORE gravimetry and rotation experiments with the ORBIT14 software. Mon. Not. R. Astron. Soc. 457, 1507–1521 (2016)

    Article  ADS  Google Scholar 

  • Ciufolini, I., Pavlis, E.C.: A confirmation of the general relativistic prediction of the Lense–Thirring effect. Nature 431, 958–960 (2004)

    Article  ADS  Google Scholar 

  • Ciufolini, I., Pavlis, E.C., Ries, J., Koenig, R., Sindoni, G., Paolozzi, A., et al.: Gravitomagnetism and its measurement with laser ranging to the LAGEOS satellites and GRACE Earth gravity models. In: General Relativity and John Archibald Wheeler, vol. 367. Springer Verlag GmbH, Berlino DEU, p. 371–434 (2010)

    Google Scholar 

  • Ciufolini, I.: A test of general relativity using LARES and LAGEOS satellites and a GRACE Earth gravity model. Eur. Phys. J. C 76, 120 (2016)

    Article  ADS  Google Scholar 

  • De Marchi, F., Tommei, G., Milani, A., Schettino, G.: Constraining the Nordtvedt parameter with the BepiColombo Radioscience experiment. Phys. Rev. D 93, 1230014 (2016)

    Article  Google Scholar 

  • De Sitter, W.: Einstein’s theory of gravitation and its astronomical consequences. Mon. Not. R. Astron. Soc. 76, 699–728 (1916)

    Article  ADS  Google Scholar 

  • Everitt, C.W.F.: Gravity Probe B: final results of a space experiment to test general relativity. Phys. Rev. Lett. 106(221101), 1–5 (2011)

    Google Scholar 

  • Fienga, A., Laskar, J., Exertier, P., Manche, H., Gastineus, M.: Numerical estimation of the sensitivity of INPOP planetary ephemerides to general relativity parameters. Celest. Mech. Dyn. Astron. 123, 325–349 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  • Iafolla, V.: Italian spring accelerometer (ISA): a fundamental support to BepiColombo radio science experiments. Planet. Space Sci. 58, 300–308 (2010)

    Article  ADS  Google Scholar 

  • Iess, L., Boscagli, G.: Advanced radio science instrumentation for the mission BepiColombo to Mercury. Planet. Space Sci. 49, 1597–1608 (2001)

    Article  ADS  Google Scholar 

  • Iess, L., Asmar, S., Tortora, P.: MORE: an advanced tracking experiment for the exploration of Mercury with the mission BepiColombo. Acta Astron. 65, 666–675 (2009)

    Article  Google Scholar 

  • Iorio, L., Lichtenegger, H.I.M., Ruggiero, M.L., Corda, C.: Phenomenology of the Lense–Thirring effect in the Solar system. Astrophys. Space Sci. 31, 351–395 (2011)

    Article  ADS  Google Scholar 

  • Iorio, L.: Constraining the angular momentum of the Sun with planetary orbital motions and general relativity. Solar Phys. 281, 815826 (2012)

    Article  Google Scholar 

  • Iorio, L.: Constraining the preferred-frame \(\alpha _1\), \(\alpha _2\) parameters from Solar system planetary precessions. Int. J. Mod. Phys. D 23, 1450006 (2014)

    Article  ADS  Google Scholar 

  • Iorio, L.: Analytically calculated post-Keplerian range and range-rate perturbations: the Solar Lense–Thirring effect and BepiColombo. arXiv:1705.11091v2 (2017)

  • Kozai, Y.: Effects of the tidal deformation of the Earth on the motion of close Earth satellites. Publ. Astron. Soc. Jpn. 17, 395–402 (1965)

    ADS  Google Scholar 

  • Lense, J., Thirring, H.: Über den Einflußder Eigenrotation der Zentralkörper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie. Phys. Z. 19, 156 (1918)

    MATH  Google Scholar 

  • Mashhoon, B., Hehl, F.W., Theiss, D.S.: On the gravitational effects of rotating masses: the Thirring–Lense papers. Gen. Relat. Grav. 16, 711–750 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  • Milani, A.: Gravity field and rotation state of Mercury from the BepiColombo radio science experiments. Planet. Space Sci. 49, 1579–1596 (2001)

    Article  ADS  Google Scholar 

  • Milani, A., et al.: Testing general relativity with the BepiColombo radio science experiment. Phys. Rev. D 66, 082001 (2002)

    Article  ADS  Google Scholar 

  • Milani, A., et al.: Relativistic models for the BepiColombo radioscience experiment. In: Relativity in Fundamental Astronomy: Dynamics, Reference Frames, and Data Analysis, Proceedings of the International Astronomical Union, IAU Symposium vol. 261, pp. 356–365 (2010)

    Article  Google Scholar 

  • Milani, A., Gronchi, G.F.: Theory of Orbit Determination. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  • Moyer, T.D.: Formulation for observed and computed values of deep space network data types of Navigation. In: Yuen, J.H. (ed.) Deep Space Communications and Navigation Series, Monograph 2. Issued by the Deep Space Communications and Navigation Systems—Jet Propulsion Laboratory, California Institute of Technology, CA (2000)

  • Mukai, T., et al.: Present status of the BepiColombo/Mercury magnetospheric orbiter. Adv. Space Res. 38, 578–582 (2006)

    Article  ADS  Google Scholar 

  • Nordtvedt, K.J.: Post-Newtonian metric for a general class of scalar-tensor gravitational theories and observational consequences. Astrophys. J. 161, 1059–1067 (1960)

    Article  ADS  MathSciNet  Google Scholar 

  • Park, R.S.: Precession of Mercury’s perihelion from ranging to the MESSENGER spacecraft. Astron. J. 153(121), 1–7 (2017)

    Google Scholar 

  • Pijpers, F.P.: Helioseismic determination of the Solar gravitational quadrupole moment. Mon. Not. R. Astron. Soc. 297, L76–L80 (1998)

    Article  ADS  Google Scholar 

  • Pitjeva, E.V., Pitjev, N.P.: Relativistic effects and dark matter in the Solar system from observations of planets and spacecraft. Mon. Not. R. Astron. Soc. 432, 3431–3437 (2013)

    Article  ADS  Google Scholar 

  • Sanchez Ortiz, N., Belló Mora, M., Jehn, R.: BepiColombo mission: estimation of Mercury gravity field and rotation parameters. Acta Astron. 58, 236–242 (2006)

    Article  Google Scholar 

  • Schettino, G., Cicaló, S., Di Ruzza, S., Tommei, G.: The relativity experiment of MORE: global full-cycle simulation and results. In: Proceedings of the IEEE Metrology for Aerospace (MetroAeroSpace), Benevento, Italy, 4–5 June, pp. 141–145 (2015)

  • Schettino, G., et al.: The radio science experiment with BepiColombo mission to Mercury. Mem. SAIt 87, 24–29 (2016)

    ADS  Google Scholar 

  • Schettino, G., Imperi, L., Iess, L., Tommei, G.: Sensitivity study of systematic errors in the BepiColombo relativity experiment In: Proceedings of the IEEE Metrology for Aerospace (MetroAeroSpace), Florence, Italy, 22–23 June, pp. 533–537 (2016)

  • Schettino, G., Tommei, G.: Testing general relativity with the radio science experiment of the BepiColombo mission to Mercury. Universe 2, 21 (2016)

    Article  ADS  Google Scholar 

  • Schettino, G., Cicaló, S., Tommei, G., Milani, A.: Determining the amplitude of Mercury’s long period librations with the BepiColombo radio science experiment. Eur. Phys. J. Plus 132(218), 6 (2017)

    Google Scholar 

  • Schiff, L.I.: Motion of a gyroscope according to Einstein’s theory of gravitation. Proc. Natl. Acad. Sci. U.S.A. 46, 871–882 (1960)

    Article  ADS  MathSciNet  Google Scholar 

  • Schuster, A.K., Jehn, R., Montagnon, E.: Spacecraft design impacts on the post-Newtonian parameter estimation. In: Proceedings of the IEEE Metrology for Aerospace (MetroAeroSpace), Benevento, Italy, 4–5 June, pp. 82–87 (2015)

  • Serra, D., Dimare, L., Tommei, G., Milani, A.: Gravimetry, rotation and angular momentum of Jupiter from the Juno radio science experiment. Planet. Space Sci. 134, 100–111 (2016)

    Article  ADS  Google Scholar 

  • Shapiro, I.I.: Forth test of general relativity. Phys. Rev. Lett. 13, 789–791 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  • Tommei, G., Milani, A., Vokrouhlicky, D.: Light-time computations for the BepiColombo radio science experiment. Celest. Mech. Dyn. Astron. 107, 285–298 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  • Tommei, G., Dimare, L., Serra, D., Milani, A.: On the Juno radio science experiment: models, algorithms and sensitivity analysis. Mon. Not. R. Astron. Soc. 446, 3089–3099 (2015)

    Article  ADS  Google Scholar 

  • Value from latest JPL ephemerides publicly. http://ssd.jpl.nasa.gov/?constants Accessed 22 Aug 2017

  • Will, C.M.: Theory and Experiment in Gravitational Physics. Cambridge University Press, Cambridge (1993)

    Book  Google Scholar 

  • Will, C.M.: The confrontation between general relativity and experiment. Living Rev. Relativ. 17, 1–117 (2014)

    Article  ADS  Google Scholar 

  • Williams, J.G., Turyshev, S.G., Boggs, D.H.: Lunar laser ranging tests of the equivalence principle with the Earth and Moon. Int. J. Mod. Phys. D 18, 1129–1175 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The results of the research presented in this paper have been performed within the scope of the Addendum No. I/080/09/1 of the Contract No. I/080/09/0 with the Italian Space Agency. The authors would like to thank the anonymous reviewers for the valuable comments and the significant improvements to the earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giulia Schettino.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

This article is part of the topical collection on Innovative methods for space threats: from their dynamics to interplanetary missions.

Guest Editors: Giovanni Federico Gronchi, Ugo Locatelli, Giuseppe Pucacco and Alessandra Celletti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schettino, G., Serra, D., Tommei, G. et al. Addressing some critical aspects of the BepiColombo MORE relativity experiment. Celest Mech Dyn Astr 130, 72 (2018). https://doi.org/10.1007/s10569-018-9863-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10569-018-9863-3

Keywords

Navigation