Skip to main content
Log in

Reduction and relative equilibria for the two-body problem on spaces of constant curvature

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

We consider the two-body problem on surfaces of constant nonzero curvature and classify the relative equilibria and their stability. On the hyperbolic plane, for each \(q>0\) we show there are two relative equilibria where the masses are separated by a distance q. One of these is geometrically of elliptic type and the other of hyperbolic type. The hyperbolic ones are always unstable, while the elliptic ones are stable when sufficiently close, but unstable when far apart. On the sphere of positive curvature, if the masses are different, there is a unique relative equilibrium (RE) for every angular separation except \(\pi /2\). When the angle is acute, the RE is elliptic, and when it is obtuse the RE can be either elliptic or linearly unstable. We show using a KAM argument that the acute ones are almost always nonlinearly stable. If the masses are equal, there are two families of relative equilibria: one where the masses are at equal angles with the axis of rotation (‘isosceles RE’) and the other when the two masses subtend a right angle at the centre of the sphere. The isosceles RE are elliptic if the angle subtended by the particles is acute and is unstable if it is obtuse. At \(\pi /2\), the two families meet and a pitchfork bifurcation takes place. Right-angled RE are elliptic away from the bifurcation point. In each of the two geometric settings, we use a global reduction to eliminate the group of symmetries and analyse the resulting reduced equations which live on a five-dimensional phase space and possess one Casimir function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. We mention only the paper (Bolsinov et al. 2012) on the Conley index where new isosceles vortex configurations were found and their stability was established using topological methods.

  2. This assumption is done without loss of generality since one may eliminate these quantities from the equations of motion (2.8) by rescaling time \(t\rightarrow \frac{\sqrt{\varkappa } t}{\mu _1}\), and the momenta \(p\rightarrow \frac{p}{\sqrt{\varkappa }} , \; {\varvec{m}}\rightarrow \frac{ \varvec{m}}{\sqrt{\varkappa }}\), where \(\varkappa =\mu _1\sqrt{G\mu _2}\).

  3. An equivalent proof of Theorem 3.2 was given before in García-Naranjo et al. (2016) by working on a symplectic slice in the unreduced system, since the reduced equations of motion were not known at that time. Although equivalent, the approach that we follow in this paper is elementary.

  4. In fact \((\alpha ,q,z,p)\) as defined are Darboux coordinates that generalize the Andoyer variables on \(T^*SO(3)\).

  5. As before, \((\alpha ,q,z,p)\) are Darboux coordinates that generalize the Andoyer variables on \(T^*SO(3)\).

  6. An alternative proof is given in (2018) by working on a symplectic slice of the unreduced system.

References

  • Bolsinov, A.V., Borisov, A.V., Mamaev, I.S.: Topology and stability of integrable systems. Russ. Math. Surv. 65(2), 259–318 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Bolsinov, A.V., Borisov, A.V., Mamaev, I.S.: The bifurcation analysis and the Conley Index in mechanics. Regul. Chaotic Dyn. 17(5), 457–478 (2012)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Borisov A.V., Mamaev I.S., Rigid body dynamics. Hamiltonian methods, integrability, chaos. Institute of Computer Science, Moscow–Izhevsk (in Russian) (2005)

  • Borisov, A.V., Mamaev, I.S.: Reduction in the two-body problem on the Lobatchevsky plane. Russ. J. Nonlinear Dyn. 2(3), 279–285 (2006). (in Russian)

    Google Scholar 

  • Borisov, A.V., Mamaev, I.S.: Rigid body dynamics in NonEuclidean spaces. Russ. J. Math. Phys. 23(4), 431–453 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Borisov, A.V., Mamaev, I.S.: The restricted two-body problem in constant curvature spaces. Celest. Mech. Dyn. Astron. 96(1), 1–17 (2006)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Borisov, A.V., Mamaev, I.S., Bizyaev, I.A.: The spatial problem of 2 bodies on a sphere. Reduction and stochasticity. Regul. Chaotic Dyn. 21(5), 556–580 (2016)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Borisov, A.V., Mamaev, I.S., Kilin, A.A.: Two-body problem on a sphere: reduction, stochasticity. Period. Orbits. Regul. Chaotic Dyn. 9(3), 265–279 (2004)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Cariñena, J.F., Rañada, M.F., Santander, M.: Central potentials on spaces of constant curvature: the Kepler problem on the two dimensional sphere \(S^2\) and the hyperbolic plane \(H^2\). J. Math. Phys. 46, 052702 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Chernoivan, V.A., Mamaev, I.S.: The restricted two-body problem and the Kepler problem in the constant curvature spaces. Regul. Chaotic Dyn. 4(2), 112–124 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Diacu, F.: Relative Equilibria of the Curved \(N\)-Body Problem. Atlantis, Paris (2012)

    Book  MATH  Google Scholar 

  • Diacu, F., Pérez-Chavela, E., Reyes, J.G.: An intrinsic approach in the curved n-body problem. The negative case. J. Differ. Equ. 252, 4529–4562 (2012)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • García-Naranjo, L.C., Marrero, J.C., Pérez-Chavela, E., Rodríguez-Olmos, M.: Classification and stability of relative equilibria for the two-body problem in the hyperbolic space of dimension 2. J. Differ. Equ. 260, 6375–6404 (2016)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Iversen, B.: Hyperbolic Geometry, vol. 25. LMS Student Texts, London (1992)

    Book  MATH  Google Scholar 

  • Kilin, A.A.: Libration Points in Spaces \(S^2\) and \(L^2\). Regul. Chaotic Dyn. 4(1), 91–103 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Killing, H.W.: Die Mechanik in den nicht-euklidischen Raumformen. J. Reine Angew. Math. 98(1), 1–48 (1885)

    MathSciNet  MATH  Google Scholar 

  • Kozlov, V.V., Harin, A.O.: Kepler’s problem in constant curvature spaces. Cel. Mech. Dyn. Astron. 54, 393–399 (1992)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Markeev, A.P.: Libration points in celestial mechanics and cosmodynamics. M. Nauka (1978) (in Russian)

  • Marsden, J.E.: Lectures on Mechanics. C.U.P. (1992)

  • Meyer, K.R., Hall, G.R., Offin, D.: Introduction to Hamiltonian dynamical systems and the \(N\)-body problem. Second edition. Applied Mathematical Sciences, 90. Springer, New York, (2009)

  • Montaldi, J.: Relative equilibria and conserved quantities in symmetric Hamiltonian systems. In: Peyresq Lectures in Nonlinear Phenomena, World Scientific (2000)

  • Montaldi, J., Nava-Gaxiola, C.: Point vortices on the hyperbolic plane. J. Math. Phys. 55, 102702 (2014)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Montanelli, H.: Computing hyperbolic choreographies. Regul. Chaotic Dyn. 21(5), 523–531 (2016)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Moser, J.: Lectures on Hamiltonian Systems, vol. 81. American Mathematical Soc, Providence (1968)

    MATH  Google Scholar 

  • Pérez-Chavela, E., Reyes-Victoria, J.G.: An intrinsic approach in the curved n-body problem. The positive curvature case. Trans. Am. Math. Soc. 364, 3805–3827 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Rodríguez-Olmos, M.: Relative equilibria for the two-body problem on \(S^2\). In preparation (2018)

  • Schering, E.: Die Schwerkraft in mehrfach ausgedehnten Gaussischen und Riemannschen Räumen. Nachr. Koönigl. Ges. Wiss. Göttingen 1873, 149–159 (1873)

    MATH  Google Scholar 

  • Serret, P.J.: Théorie nouvelle géométrique et mécanique des lignes a double courbure. Librave de Mallet-Bachelier, Paris (1860)

    Google Scholar 

  • Shchepetilov, A.V.: Two-body problem on spaces of constant curvature: 1. Dependence of the Hamiltonian on the Symmetry Group and the reduction of the classical system. Theor. Math. Phys. 124(2), 1068–1081 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Shchepetilov, A.V.: Calculus and Mechanics on Two-Point Homogenous Riemannian Spaces. Lect. Notes Phys., vol. 707. Springer, Berlin (2006)

  • Siegel, C.L., Moser, J.K.: Lectures on Celestial Mechanics. Translated from the German by C. I. Kalme. Reprint of the 1971 Translation. Classics in Mathematics, p. 1995. Springer, Berlin (1995)

    Google Scholar 

Download references

Acknowledgements

We are thankful to both reviewers and the associate editor for their remarks and criticisms which led to an improvement of our paper. We are grateful to Miguel Rodríguez-Olmos for discussing his preliminary results of (2018) with us. The authors express their gratitude to B. S. Bardin and I. A. Bizyaev for fruitful discussions and useful comments. The research contribution of LGN and JM was made possible by a Newton Advanced Fellowship from the Royal Society, Ref: NA140017. The work of AVB and ISM is supported by the Russian Foundation for Basic Research (Project No. 17-01-00846-a). The research of AVB was also carried out within the framework of the state assignment of the Ministry of Education and Science of Russia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. C. García-Naranjo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borisov, A.V., García-Naranjo, L.C., Mamaev, I.S. et al. Reduction and relative equilibria for the two-body problem on spaces of constant curvature. Celest Mech Dyn Astr 130, 43 (2018). https://doi.org/10.1007/s10569-018-9835-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10569-018-9835-7

Keywords

Navigation