Skip to main content
Log in

The linear stability of the post-Newtonian triangular equilibrium in the three-body problem

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

Continuing a work initiated in an earlier publication (Yamada et al. in Phys Rev D 91:124016, 2015), we reexamine the linear stability of the triangular solution in the relativistic three-body problem for general masses by the standard linear algebraic analysis. In this paper, we start with the Einstein–Infeld–Hoffmann form of equations of motion for N-body systems in the uniformly rotating frame. As an extension of the previous work, we consider general perturbations to the equilibrium, i.e., we take account of perturbations orthogonal to the orbital plane, as well as perturbations lying on it. It is found that the orthogonal perturbations depend on each other by the first post-Newtonian (1PN) three-body interactions, though these are independent of the lying ones likewise the Newtonian case. We also show that the orthogonal perturbations do not affect the condition of stability. This is because these do not grow with time, but always precess with two frequency modes, namely, the same with the orbital frequency and the slightly different one due to the 1PN effect. The condition of stability, which is identical to that obtained by the previous work (Yamada et al. 2015) and is valid for the general perturbations, is obtained from the lying perturbations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abbott, B.P., et al. (LIGO Scientific Collaboration and Virgo Collaboration): Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016a)

  • Abbott, B.P., et al. (LIGO Scientific Collaboration and Virgo Collaboration): GW151226: observation of gravitational waves from a 22-solar-mass binary black hole coalescence. Phys. Rev. Lett. 116, 241103 (2016b)

  • Abbott, B.P., et al. (LIGO Scientific Collaboration and Virgo Collaboration): Binary black hole mergers in the first advanced LIGO observing run. Phys. Rev. X 6, 041015 (2016c)

  • Abbott, B.P., et al. (LIGO Scientific Collaboration and Virgo Collaboration): GW170104: observation of a 50-solar-mass binary black hole coalescence at redshift 0.2. Phys. Rev. Lett. 118, 221101 (2017)

  • Acernese, F., et al.: Advanced virgo: a second-generation interferometric gravitational wave detector. Class. Quantum Gravity 32(2), 024001 (2015)

    Article  ADS  Google Scholar 

  • Asada, H.: Gravitational wave forms for a three-body system in Lagrange’s orbit: parameter determinations and a binary source test. Phys. Rev. D 80, 064021 (2009)

    Article  ADS  Google Scholar 

  • Asada, H., Futamase, T., Hogan, P.: Equations of Motion in General Relativity. Oxford University, New York (2011)

    MATH  Google Scholar 

  • Battista, E., et al.: Earth-moon Lagrangian points as a test bed for general relativity and effective field theories of gravity. Phys. Rev. D 92, 064045 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  • Blaes, O., Lee, M.H., Socrates, A.: The Kozai mechanism and the evolution of binary supermassive black holes. Astrophys. J. 578(2), 775 (2002)

    Article  ADS  Google Scholar 

  • Chiba, T., Imai, T., Asada, H.: Can \(N\)-body systems generate periodic gravitational waves? Mon. Not. R. Astron. Soc. 377(1), 269 (2007)

    Article  ADS  Google Scholar 

  • Danby, J.M.A.: Fundamentals of Celestial Mechanics. William-Bell, Richmond (1988)

    Google Scholar 

  • Dmitrašinović, V., Šuvakov, M., Hudomal, A.: Gravitational waves from periodic three-body systems. Phys. Rev. Lett. 113, 101102 (2014)

    Article  ADS  Google Scholar 

  • Galaviz, P., Brügmann, B.: Characterization of the gravitational wave emission of three black holes. Phys. Rev. D 83, 084013 (2011)

    Article  ADS  Google Scholar 

  • Gascheau, G.: Examen d’une classe d’équations différentielles et applications à un cas particulier du problème des trois corps. C. R. Acad. Sci. 16, 393 (1843)

    Google Scholar 

  • Goldstein, H.: Classical Mechanics. Addison-Wesley, Reading (1980)

    MATH  Google Scholar 

  • Ichita, T., Yamada, K., Asada, H.: Post-Newtonian effects on Lagrange’s equilateral triangular solution for the three-body problem. Phys. Rev. D 83, 084026 (2011)

    Article  ADS  Google Scholar 

  • KAGRA. http://gwcenter.icrr.u-tokyo.ac.jp/en/ (2017)

  • Krefetz, E.: Restricted three-body problem in the post-Newtonian approximation. Astron. J. 72, 471 (1967)

    Article  ADS  MATH  Google Scholar 

  • Landau, L.D., Lifshitz, E.M.: The Classical Theory of Fields. Pergamon, Oxford (1962)

    MATH  Google Scholar 

  • Maindl, T.I.: Completing the inventory of the solar system. In: Rettig, T., Hahn, J. (eds.) Astronomical Society of the Pacific Conference Proceedings, vol. 107, p. 147 (1996)

  • Marchal, C.: The Three-Body Problem. Elsevier, Amsterdam (1990)

    MATH  Google Scholar 

  • Meiron, Y., Kocsis, B., Loeb, A.: Detecting triple systems with gravitational wave observations. Astrophys. J. 834(2), 200 (2017)

    Article  ADS  Google Scholar 

  • Miller, M.C., Hamilton, D.P.: Four-body effects in globular cluster black hole coalescence. Astrophys. J. 576(2), 894 (2002)

    Article  ADS  Google Scholar 

  • Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. Freeman, New York (1973)

    Google Scholar 

  • Murray, C.D., Dermott, S.F.: Solar System Dynamics. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  • Ransom, S.M., et al.: A millisecond pulsar in a stellar triple system. Nature 505(7484), 520 (2014)

    Article  ADS  Google Scholar 

  • Routh, R.J.: On Laplace’s three particles, with a supplement on the stability of steady motion. Proc. Lond. Math. Soc. 6, 86 (1875)

    MATH  MathSciNet  Google Scholar 

  • Schnittman, J.D.: The Lagrange equilibrium points L4 and L5 in black hole binary system. Astrophys. J. 724(1), 39 (2010)

    Article  ADS  Google Scholar 

  • Seto, N.: Relativistic resonant relations between massive black hole binary and extreme mass ratio inspiral. Phys. Rev. D 85, 064037 (2012)

    Article  ADS  Google Scholar 

  • Seto, N.: Highly eccentric Kozai mechanism and gravitational-wave observation for neutron-star binaries. Phys. Rev. Lett. 111, 061106 (2013)

    Article  ADS  Google Scholar 

  • Seto, N., Muto, T.: Relativistic astrophysics with resonant multiple inspirals. Phys. Rev. D 81, 103004 (2010)

    Article  ADS  Google Scholar 

  • Thompson, T.A.: Accelerating compact object mergers in triple systems with the Kozai resonance: a mechanism for prompt type Ia supernovae, gamma-ray bursts, and other exotica. Astrophys. J. 741(2), 82 (2011)

    Article  ADS  Google Scholar 

  • Torigoe, Y., Hattori, K., Asada, H.: Gravitational wave forms for two- and three-body gravitating systems. Phys. Rev. Lett. 102, 251101 (2009)

    Article  ADS  Google Scholar 

  • Wen, L.: On the eccentricity distribution of coalescing black hole binaries driven by the Kozai mechanism in globular clusters. Astrophys. J. 598(1), 419 (2003)

    Article  ADS  Google Scholar 

  • Will, C.M.: Theory and Experiment in Gravitational Physics. Cambridge University, New York (1993)

    Book  MATH  Google Scholar 

  • Yamada, K., Asada, H.: Collinear solution to the general relativistic three-body problem. Phys. Rev. D 82, 104019 (2010)

    Article  ADS  Google Scholar 

  • Yamada, K., Asada, H.: Uniqueness of collinear solutions for the relativistic three-body problem. Phys. Rev. D 83, 024040 (2011)

    Article  ADS  Google Scholar 

  • Yamada, K., Asada, H.: Post-Newtonian effects of planetary gravity on the perihelion shift. Mon. Not. R. Astron. Soc. 423(4), 3540 (2012a)

    Article  ADS  Google Scholar 

  • Yamada, K., Asada, H.: Triangular solution to the general relativistic three-body problem for general masses. Phys. Rev. D 86, 124029 (2012b)

    Article  ADS  Google Scholar 

  • Yamada, K., Asada, H.: Nonchaotic evolution of triangular configuration due to gravitational radiation reaction in the three-body problem. Phys. Rev. D 93, 084027 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  • Yamada, K., Tsuchiya, T., Asada, H.: Post-Newtonian effects on the stability of the triangular solution in the three-body problem for general masses. Phys. Rev. D 91, 124016 (2015)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank Hideki Asada for reading the manuscript. K.Y. is grateful to Takahiro Tanaka, Hiroyuki Nakano, and Hiroyuki Kitamoto for useful comments and encouragements. This work was supported in part by JSPS Grant-in-Aid for JSPS Fellows, No. 15J01732 (K.Y.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kei Yamada.

Appendices

Appendix A: Derivation of EIH equations of motion in uniformly rotating frame

The EIH equation of motion for N-body systems is given by (Misner et al. 1973; Landau and Lifshitz 1962; Will 1993; Asada et al. 2011)

$$\begin{aligned} \frac{\hbox {d}^2\varvec{r}_K}{\hbox {d} t^2} =&\, \sum _{A\ne K}\frac{Gm_A}{r_{AK}^3}\varvec{r}_{AK} \biggl [1 - 4\sum _{B\ne K}\frac{Gm_B}{c^2r_{BK}} - \sum _{C\ne A}\frac{Gm_C}{c^2r_{CA}}\left( 1-\frac{\varvec{r}_{AK}\cdot \varvec{r}_{CA}}{2r^2_{CA}}\right) + \frac{v_K^2}{c^2} + 2\frac{v_A^2}{c^2} \nonumber \\&- \,4\frac{\varvec{v}_A\cdot \varvec{v}_K}{c^2} - \frac{3}{2}\left( \frac{\varvec{v}_A}{c}\cdot \varvec{x}_{AK}\right) ^2 \biggr ] - \sum _{A\ne K}\frac{Gm_A}{c^2r^2_{AK}} \varvec{x}_{AK}\cdot \left( 3\frac{\varvec{v}_A}{c} -4\frac{\varvec{v}_K}{c} \right) \left( \frac{\varvec{v}_A}{c} - \frac{\varvec{v}_K}{c}\right) \nonumber \\&+ \,\frac{7}{2}\sum _{A\ne K}\sum _{C\ne A}\frac{G^2m_Am_C}{c^2r_{AK}r^3_{CA}} \varvec{r}_{CA}, \end{aligned}$$
(61)

where \(\varvec{r}_I\), \(\varvec{v}_I\), and \(m_I\) are the position, the velocity, and the mass of Ith particle, respectively. \(\varvec{r}_{I J}\equiv \varvec{r}_I-\varvec{r}_J\), \(r_{I J}\equiv |\varvec{r}_{I J}|\), \(\varvec{x}_{I J}\equiv \varvec{r}_{I J}/r_{I J}\), \(v_I \equiv |\varvec{v}_I|\). For the above equation, we consider the linear transformation of the function t. In general, a linear transformation from \(\mathbb {R}^n\) to \(\mathbb {R}^n\) is given by

$$\begin{aligned} \varvec{r}^{\prime }=R\varvec{r}, \end{aligned}$$
(62)

where \(\varvec{r}, \varvec{r}^{\prime }\in \mathbb {R}^n\), R is an \(n\times n\) matrix. If R is a one to one and onto mappings, the linear mapping of the first order and second order time derivatives of \(\varvec{r}\) are calculated as

$$\begin{aligned}&\displaystyle R\frac{\hbox {d}\varvec{r}}{\hbox {d} t} = \frac{\hbox {d}\varvec{r}^{\prime }}{\hbox {d} t} + S\varvec{r}^{\prime }, \end{aligned}$$
(63)
$$\begin{aligned}&\displaystyle R\frac{\hbox {d}^2\varvec{r}}{\hbox {d} t^2} = \frac{\hbox {d}^2\varvec{r}^{\prime }}{\hbox {d} t^2} + 2S\frac{\hbox {d}\varvec{r}^{\prime }}{\hbox {d} t} + S^2\varvec{r}^{\prime } + \frac{\hbox {d}S}{\hbox {d} t}\varvec{r}^{\prime }, \end{aligned}$$
(64)

where \(S \equiv -(\hbox {d}R)/(\hbox {d} t)R^{-1}\).

If R is a rotation matrix, R is the orthogonal matrix and the determinant of R is 1. Therefore, the transposition of R is consistent with the inverse of R, namely \({}^t R=R^{-1}\), and S becomes skew-symmetric. Thus, for a three-dimensional transformation, we can set S as

$$\begin{aligned} S=\begin{pmatrix} 0 &{} -w_3 &{} w_2\\ w_3 &{} 0 &{} -w_1\\ -w_2 &{} w_1 &{} 0 \end{pmatrix}, \end{aligned}$$
(65)

then, for all vectors \(\varvec{v}\in \mathbb {R}^{3}\), it satisfies the relation \(S\varvec{v}=\varvec{\varOmega }\times \varvec{v}\), where \(\varvec{\varOmega }=(w_1, w_2, w_3)\).

The EIH equation in a uniformly rotating frame of constant angular velocity \(\varvec{\varOmega }\) can be expressed as

$$\begin{aligned} \frac{\hbox {d}^2 \varvec{r}_K^{\prime }}{\hbox {d} t^2} =&\, \sum _{A \ne K} \frac{G m_A}{(r_{K A}^{\prime })^3} \varvec{r}_{A K}^{\prime } - 2 (\varvec{\varOmega } \times \varvec{v}_K^{\prime }) - (\varvec{\varOmega } \cdot \varvec{r}_K^{\prime }) \varvec{\varOmega } + \varOmega ^2 \varvec{r}_K^{\prime } \nonumber \\&+\, \sum _{A \ne K} \frac{G m_A}{(r_{K A}^{\prime })^3}\varvec{r}_{A K}^{\prime } \left[ - 4 \sum _{B \ne K} \frac{G m_B}{c^2 r_{K B}^{\prime }} - \sum _{C \ne A} \frac{G m_C}{c^2 r_{A C}^{\prime }} \left( 1 + \frac{\varvec{r}_{A K}^{\prime } \cdot \varvec{r}_{A C}^{\prime }}{2 (r_{C A}^{\prime })^2} \right) \right. \nonumber \\&+\, \left( \frac{\varvec{v}_K^{\prime } + (\varvec{\varOmega } \times \varvec{r}_K^{\prime })}{c} \right) ^2 + 2 \left( \frac{\varvec{v}_A^{\prime } + (\varvec{\varOmega } \times \varvec{r}_A^{\prime })}{c} \right) ^2 \nonumber \\&\left. -\, 4 \left( \frac{\varvec{v}_K^{\prime } + (\varvec{\varOmega } \times \varvec{r}_K^{\prime })}{c} \right) \cdot \left( \frac{\varvec{v}_A^{\prime } + (\varvec{\varOmega } \times \varvec{r}_A^{\prime })}{c} \right) - \frac{3}{2} \left\{ \left( \frac{\varvec{v}_A^{\prime }+ (\varvec{\varOmega } \times \varvec{r}_A^{\prime })}{c} \right) \cdot \varvec{x}_{A K}^{\prime } \right\} ^2 \right] \nonumber \\&-\, \sum _{A \ne K} \frac{G m_A}{c^2 (r_{K A}^{\prime })^2} \left[ \varvec{x}_{A K}^{\prime } \cdot \left( \frac{4 [\varvec{v}_K^{\prime } + (\varvec{\varOmega } \times \varvec{r}_K^{\prime })] - 3 [\varvec{v}_A^{\prime } + (\varvec{\varOmega } \times \varvec{r}_A^{\prime })]}{c} \right) \right] \nonumber \\&\times \, \left( \frac{[\varvec{v}_K^{\prime } + (\varvec{\varOmega } \times \varvec{r}_K^{\prime })] - [\varvec{v}_A^{\prime } + (\varvec{\varOmega } \times \varvec{r}_A^{\prime })]}{c} \right) \nonumber \\&+\, \frac{7}{2} \sum _{A \ne K} \sum _{C \ne A} \frac{G m_A}{c^2 r_{K A}^{\prime }} \frac{G m_C}{(r_{A C}^{\prime })^3} \varvec{r}_{C A}^{\prime }, \end{aligned}$$
(66)

using the relations

$$\begin{aligned} \varvec{r}_{I J}\cdot \varvec{r}_{MN}&\,= \varvec{r}_{I J}^{\prime }\cdot \varvec{r}_{MN}^{\prime }, \end{aligned}$$
(67)
$$\begin{aligned} \varvec{v}_I\cdot \varvec{v}_J&\,= (\varvec{v}_I^{\prime } + \varvec{\varOmega }\times \varvec{r}_I^{\prime })\cdot (\varvec{v}_J^{\prime } + \varvec{\varOmega }\times \varvec{r}_J^{\prime }),\end{aligned}$$
(68)
$$\begin{aligned} \varvec{v}_I\cdot \varvec{r}_{J K}&\,= (\varvec{r}_I^{\prime } + \varvec{\varOmega }\times \varvec{r}_{I}^{\prime })\cdot \varvec{r}_{J K}^{\prime }, \end{aligned}$$
(69)

and where we set \(\varOmega \equiv |\varvec{\varOmega }|\).

Appendix B: Transformation to Routh’s variables

Eliminating \(\xi _{23}\) and \(\eta _{23}\) from Eq. (25), the perturbed equations of motion for \(\xi _{12}\), \(\eta _{12}\), \(\xi _{31}\), \(\eta _{31}\) become

$$\begin{aligned} 0 =&\, \left( D^2+\frac{9 \nu _3}{4}-3\right) \xi _{12} +\left( \frac{3 \sqrt{3} \nu _3}{4}-2 D\right) \eta _{12} -\frac{3}{4} \sqrt{3} \nu _3 \eta _{31} -\frac{9}{4} \nu _3 \xi _{31} \nonumber \\&+\, \varepsilon \left[ \left( \frac{1}{8} \sqrt{3} D \nu _3 (-9 \nu _2 \nu _3+21 \nu _2+4 \nu _3-8) \right. \right. \nonumber \\&\left. +\, \frac{1}{32} \left[ -22 \nu _2^2 (9 \nu _3+4)+\nu _2 \left( -126 \nu _3^2+136 \nu _3+88\right) -108 \nu _3^3+270 \nu _3^2-537 \nu _3+540\right] \right) \xi _{12} \nonumber \\&+\, \left( \frac{1}{8} D \left[ -2 \nu _2^2 (9 \nu _3+17)+\nu _2 \left( -9 \nu _3^2-9 \nu _3+34\right) +10 \nu _3^2+2 \nu _3+45\right] \right. \nonumber \\&\left. -\, \frac{1}{32} \sqrt{3} \nu _3 \left[ 30 \nu _2^2+\nu _2 (66 \nu _3+56)+84 \nu _3^2-66 \nu _3+127\right] \right) \eta _{12} \nonumber \\&+\, \left( \frac{1}{32} \nu _3 \left[ 126 \nu _2^2+2 \nu _2 (27 \nu _3-76)+144 \nu _3^2-322 \nu _3+553\right] \right. \nonumber \\&\left. -\,\frac{1}{8} \sqrt{3} D \nu _3 \left[ \nu _2 (9 \nu _3+7)+9 \nu _3^2-12 \nu _3-1\right] \right) \xi _{31} \nonumber \\&+\, \left( \frac{1}{8} D \nu _3 \left[ -\nu _2 (9 \nu _3+7)+9 \nu _3^2-32 \nu _3+11\right] \right. \nonumber \\&\left. \left. +\, \frac{1}{32} \sqrt{3} \nu _3 \left[ 30 \nu _2^2+\nu _2 (66 \nu _3+56)+84 \nu _3^2-66 \nu _3+127\right] \right) \eta _{31} \right] , \end{aligned}$$
(70)
$$\begin{aligned} 0 =&\, \left( D^2-\frac{9 \nu _3}{4}\right) \eta _{12} +\left( 2 D+\frac{3 \sqrt{3} \nu _3}{4}\right) \xi _{12} + \frac{9}{4} \nu _3 \eta _{31} -\frac{3}{4} \sqrt{3} \nu _3 \xi _{31} \nonumber \\&+\, \varepsilon \left[ \left( \frac{1}{8} D \left[ -6 \nu _2^2 (3 \nu _3+5)+\nu _2 \left( -9 \nu _3^2-13 \nu _3+30\right) -2 \nu _3^2+14 \nu _3-61\right] \right. \right. \nonumber \\&\left. -\,\frac{1}{32} \sqrt{3} \nu _3 \left[ 54 \nu _2^2+6 \nu _2 (3 \nu _3+8)+36 \nu _3^2+6 \nu _3+103\right] \right) \xi _{12} \nonumber \\&+\, \left( \frac{1}{8} \sqrt{3} D \nu _3 [\nu _2 (9 \nu _3-25)-4 \nu _3+8] \right. \nonumber \\&\left. +\,\frac{3}{32} \nu _3 \left[ 66 \nu _2^2+6 \nu _2 (7 \nu _3-8)+36 \nu _3^2-66 \nu _3+155\right] \right) \eta _{12} \nonumber \\&+\, \left( \frac{1}{8} D \nu _3 \left( -9 \nu _2 \nu _3+\nu _2+9 \nu _3^2-34 \nu _3+13\right) \right. \nonumber \\&\left. + \,\frac{1}{32} \sqrt{3} \nu _3 \left[ 54 \nu _2^2+6 \nu _2 (15 \nu _3-8)+72 \nu _3^2-78 \nu _3+151\right] \right) \xi _{31} \nonumber \\&+\, \left( \frac{1}{8} \sqrt{3} D \nu _3 \left[ \nu _2 (9 \nu _3-1)+9 \nu _3^2-18 \nu _3+5\right] \right. \nonumber \\&\left. \left. -\, \frac{3}{32} \nu _3 \left[ 66 \nu _2^2+6 \nu _2 (7 \nu _3-8)+36 \nu _3^2-66 \nu _3+155\right] \right) \eta _{31} \right] , \end{aligned}$$
(71)
$$\begin{aligned} 0 =&\, \left( D^2+\frac{9 \nu _2}{4}-3\right) \xi _{31} +\left( -2 D-\frac{3 \sqrt{3} \nu _2}{4}\right) \eta _{31} + \frac{3}{4} \sqrt{3} \nu _2 \eta _{12} -\frac{9}{4} \nu _2 \xi _{12} \nonumber \\&+\, \varepsilon \left[ \left( \frac{1}{8} \sqrt{3} D \nu _2 \left[ 9 \nu _2^2+3 \nu _2 (3 \nu _3-4)+7 \nu _3-1\right] \right. \right. \nonumber \\&\left. +\, \frac{1}{32} \nu _2 \left[ 144 \nu _2^2+\nu _2 (54 \nu _3-322)+126 \nu _3^2-152 \nu _3+553\right] \right) \xi _{12} \nonumber \\&+\, \left( \frac{1}{8} D \nu _2 \left[ 9 \nu _2^2-\nu _2 (9 \nu _3+32)-7 \nu _3+11\right] \right. \nonumber \\&\left. -\, \frac{1}{32} \sqrt{3} \nu _2 \left[ 84 \nu _2^2+66 \nu _2 (\nu _3-1)+30 \nu _3^2+56 \nu _3+127\right] \right) \eta _{12} \nonumber \\&+\, \left( \frac{1}{8} \sqrt{3} D \nu _2 [\nu _2 (9 \nu _3-4)-21 \nu _3+8] \right. \nonumber \\&\left. + \,\frac{1}{32} \left[ -108 \nu _2^3-18 \nu _2^2 (7 \nu _3-15)+\nu _2 \left( -198 \nu _3^2+136 \nu _3-537\right) -88 \nu _3^2+88 \nu _3+540\right] \right) \xi _{31} \nonumber \\&+\, \left( \frac{1}{8} D \left[ \nu _2^2 (10-9 \nu _3)+\nu _2 \left( -18 \nu _3^2-9 \nu _3+2\right) -34 \nu _3^2+34 \nu _3+45\right] \right. \nonumber \\&\left. \left. +\, \frac{1}{32} \sqrt{3} \nu _2 \left[ 84 \nu _2^2+66 \nu _2 (\nu _3-1)+30 \nu _3^2+56 \nu _3+127\right] \right) \eta _{31} \right] , \end{aligned}$$
(72)
$$\begin{aligned} 0 =&\, \left( D^2-\frac{9 \nu _2}{4}\right) \eta _{31} +\left( 2 D-\frac{3 \sqrt{3} \nu _2}{4}\right) \xi _{31} + \frac{9}{4} \nu _2 \eta _{12} +\frac{3}{4} \sqrt{3} \nu _2 \xi _{12} \nonumber \\&+\, \varepsilon \left[ \left( \frac{1}{8} D \nu _2 \left[ 9 \nu _2^2-\nu _2 (9 \nu _3+34)+\nu _3+13\right] \right. \right. \nonumber \\&\left. -\, \frac{1}{32} \sqrt{3} \nu _2 \left[ 72 \nu _2^2+\nu _2 (90 \nu _3-78)+54 \nu _3^2-48 \nu _3+151\right] \right) \xi _{12} \nonumber \\&+\, \left( \frac{1}{8} \sqrt{3} D \nu _2 \left[ -9 \nu _2^2-9 \nu _2 (\nu _3-2)+\nu _3-5\right] \right. \nonumber \\&\left. -\, \frac{3}{32} \nu _2 \left[ 36 \nu _2^2+6 \nu _2 (7 \nu _3-11)+66 \nu _3^2-48 \nu _3+155\right] \right) \eta _{12} \nonumber \\&+\, \left( \frac{1}{8} D \left[ \nu _2^2 (-(9 \nu _3+2))+\nu _2 \left( -18 \nu _3^2-13 \nu _3+14\right) -30 \nu _3^2+30 \nu _3-61\right] \right. \nonumber \\&\left. + \,\frac{1}{32} \sqrt{3} \nu _2 \left[ 36 \nu _2^2+6 \nu _2 (3 \nu _3+1)+54 \nu _3^2+48 \nu _3+103\right] \right) \xi _{31} \nonumber \\&+\, \left( \frac{1}{8} \sqrt{3} D \nu _2 [\nu _2 (4-9 \nu _3)+25 \nu _3-8] \right. \nonumber \\&\left. \left. +\, \frac{3}{32} \nu _2 \left[ 36 \nu _2^2+6 \nu _2 (7 \nu _3-11)+66 \nu _3^2-48 \nu _3+155\right] \right) \eta _{31} \right] . \end{aligned}$$
(73)

Let us seek the relations between \((\xi _{I J}, \eta _{I J})\) and Routh’s variables. First, since \(\chi _{12}\) is a perturbation to \(r_{12}\), we obtain the relation

$$\begin{aligned} \ell (1 + \rho _{12}) (1 + \xi _{12}) = \ell (1 + \rho _{12} + \chi _{12}). \end{aligned}$$
(74)

Therefore,

$$\begin{aligned} \chi _{12} = (1 + \rho _{12}) \xi _{12}. \end{aligned}$$
(75)

In the same way, we obtain the relation for X as

$$\begin{aligned} X = (1 + \rho _{31}) \xi _{31} - (1 + \rho _{12}) \xi _{12}. \end{aligned}$$
(76)

Next, let us define the projection of vectors onto the orbital plane as

$$\begin{aligned} \bar{\varvec{A}} \equiv \varvec{A} - (\varvec{A} \cdot \varvec{z}) \varvec{z}. \end{aligned}$$
(77)

Using this, \(\sigma \) is expressed as a perturbation to the angle between \(\bar{\varvec{r}}_{12}\) and \(\bar{\varvec{r}}_{12} + \bar{\delta \varvec{r}}_{12}\), so that,

$$\begin{aligned} \sin \sigma = \frac{\left| \bar{\varvec{r}}_{12} \times ( \bar{\varvec{r}}_{12} + \bar{\delta \varvec{r}}_{12}) \right| }{r_{12}^2 (1 + \xi _{12})}. \end{aligned}$$
(78)

Solving this for \(\sigma \) to the 1PN order, we obtain

$$\begin{aligned} \sigma = \eta _{12}. \end{aligned}$$
(79)

Finally, since \(\psi _{23}\) is a perturbation in the opposite angle of \(r_{23}\), we obtain

$$\begin{aligned} \cos \left( \frac{\pi }{3} + \sqrt{3} \rho _{23} + \psi _{23} \right) = - \frac{(\bar{\varvec{r}}_{31} + \bar{\delta \varvec{r}}_{31}) \cdot ( \bar{\varvec{r}}_{12} + \bar{\delta \varvec{r}}_{12})}{r_{31} r_{12} (1 + \xi _{31}) (1 + \xi _{12})}. \end{aligned}$$
(80)

This leads to

$$\begin{aligned} \psi _{23} = \eta _{31} - \eta _{12}, \end{aligned}$$
(81)

at the 1PN order. Using these relations, we obtain the perturbed equations of motion (39)–(42).

Appendix C: The components of the coefficient matrix of the perturbation equation

The components of the coefficient matrix \(\mathcal {N}\) in Eq. (43) are written as

$$\begin{aligned}&\mathcal {N}_{11} = \,\frac{\varepsilon }{8} \sqrt{3} \nu _3 (9 \nu _3-7) (2 \nu _2+\nu _3-1), \end{aligned}$$
(82)
$$\begin{aligned}&\mathcal {N}_{12} =\, \frac{\varepsilon }{8} \sqrt{3} \nu _3 \left[ \nu _2 (9 \nu _3+7) +9 \nu _3^2-12 \nu _3-1\right] ,\end{aligned}$$
(83)
$$\begin{aligned}&\mathcal {N}_{13} =\, -\frac{\varepsilon }{8} \nu _3 \left[ -\nu _2 (9 \nu _3+7)+9 \nu _3^2-32 \nu _3+11\right] ,\end{aligned}$$
(84)
$$\begin{aligned} \mathcal {N}_{14} =&\, 2-\frac{\varepsilon }{24} \left[ -6 \nu _2^2 (9 \nu _3+19) -6 \nu _2 \left( 9 \nu _3^2+10 \nu _3-19\right) +27 \nu _3^3-60 \nu _3^2+63 \nu _3\right. \nonumber \\&\left. +\,125\right] ,\end{aligned}$$
(85)
$$\begin{aligned} \mathcal {N}_{15} =&\, 3 - \frac{\varepsilon }{32}\left[ -11 \nu _2^2 (9 \nu _3+8) + \nu _2 \left( -72 \nu _3^2 -34 \nu _3+88\right) +63 \nu _3^3-34 \nu _3^2+16 \nu _3 \right. \nonumber \\&\left. +\,540\right] ,\end{aligned}$$
(86)
$$\begin{aligned} \mathcal {N}_{16} =&\, \frac{9}{4}\nu _3 - \frac{\varepsilon }{32} \nu _3 \left[ 99 \nu _2^2+2 \nu _2 (27 \nu _3-85) +171 \nu _3^2-304 \nu _3+553\right] ,\end{aligned}$$
(87)
$$\begin{aligned} \mathcal {N}_{17} =&\, \frac{3}{4}\sqrt{3}\nu _3 - \frac{\varepsilon }{32} \sqrt{3} \nu _3\left[ 24 \nu _2^2 +\nu _2 (60 \nu _3+62)+87 \nu _3^2-54 \nu _3+122\right] ,\end{aligned}$$
(88)
$$\begin{aligned} \mathcal {N}_{21} =&\, - \frac{\varepsilon }{8} \sqrt{3}\nu _2 (9 \nu _2-7) (\nu _2+2 \nu _3-1) -\frac{\varepsilon }{8} \sqrt{3} \nu _3 (9 \nu _3-7) (2 \nu _2+\nu _3-1),\end{aligned}$$
(89)
$$\begin{aligned} \mathcal {N}_{22} =&\, -\frac{\varepsilon }{8} \sqrt{3}\nu _2 \left[ \nu _2 (9 \nu _3-4)-21 \nu _3+8 \right] - \frac{\varepsilon }{8} \sqrt{3} \nu _3 \left[ \nu _2 (9 \nu _3+7) +9 \nu _3^2-12 \nu _3-1\right] ,\end{aligned}$$
(90)
$$\begin{aligned} \mathcal {N}_{23} =&\, 2- \frac{\varepsilon }{24}\left[ -9 \nu _2^2 (3 \nu _3-4)+3\nu _2 \left( -18 \nu _3^2-13 \nu _3+10\right) -114 \nu _3^2+114 \nu _3+125\right] \nonumber \\&+\, \frac{\varepsilon }{8} \nu _3 \left[ -\nu _2 (9 \nu _3+7)+9 \nu _3^2-32 \nu _3+11\right] ,\end{aligned}$$
(91)
$$\begin{aligned} \mathcal {N}_{24} =&\, - \frac{\varepsilon }{24}\left[ 27 \nu _2^3-6 \nu _2^2 (9 \nu _3+10)+3\nu _2 \left( -18 \nu _3^2-20\nu _3+21\right) -114 \nu _3^2+114 \nu _3 +125\right] \nonumber \\&+ \frac{\varepsilon }{24} \left[ -6 \nu _2^2 (9 \nu _3+19) -6 \nu _2 \left( 9 \nu _3^2+10 \nu _3-19\right) +27 \nu _3^3-60 \nu _3^2 +63 \nu _3+125\right] ,\end{aligned}$$
(92)
$$\begin{aligned} \mathcal {N}_{25} =&\, - \frac{\varepsilon }{32}\left[ 63 \nu _2^3-2 \nu _2^2 (36 \nu _3+17)+\nu _2 \left( -99 \nu _3^2-34 \nu _3+16\right) -88 \nu _3^2+88 \nu _3 +540\right] \nonumber \\&+ \frac{\varepsilon }{32} \left[ -11 \nu _2^2 (9 \nu _3+8) + \nu _2 \left( -72 \nu _3^2 -34 \nu _3+88\right) +63 \nu _3^3-34 \nu _3^2 \right. \nonumber \\&\left. +\,16 \nu _3+540\right] ,\end{aligned}$$
(93)
$$\begin{aligned} \mathcal {N}_{26} =&\, -\frac{9\nu _2}{4}+3 - \frac{\varepsilon }{32}\left[ -108 \nu _2^3-18 \nu _2^2 (7 \nu _3-15)+\nu _2 \left( -198 \nu _3^2+136 \nu _3-537\right) \right. \nonumber \\&\left. -\,88 \nu _3^2+88 \nu _3+540\right] - \frac{9}{4}\nu _3 + \frac{\varepsilon }{32} \nu _3 \left[ 99 \nu _2^2+2 \nu _2 (27 \nu _3-85) +171 \nu _3^2 \right. \nonumber \\&\left. -\,304 \nu _3+553\right] ,\end{aligned}$$
(94)
$$\begin{aligned} \mathcal {N}_{27} =&\, \frac{3\sqrt{3}\nu _2}{4} - \frac{\varepsilon }{32} \sqrt{3} \nu _2 \left[ 87 \nu _2^2+6 \nu _2 (10 \nu _3-9) +24 \nu _3^2+62 \nu _3+122\right] - \frac{3}{4}\sqrt{3}\nu _3 \nonumber \\&+ \,\frac{\varepsilon }{32} \sqrt{3} \nu _3\left[ 24 \nu _2^2 +\nu _2 (60 \nu _3+62)+87 \nu _3^2-54 \nu _3+122\right] ,\end{aligned}$$
(95)
$$\begin{aligned} \mathcal {N}_{31} =&\, - \frac{\varepsilon }{24} \left[ 27 \nu _2^3-54 \nu _2^2 (\nu _3+2) -\nu _2 \left( 54\nu _3^2+42\nu _3-101\right) -90 \nu _3^2+80 \nu _3-183 \right. \nonumber \\&\left. -\,2\nu _1(3\nu _2-6\nu _3+5)\right] + \frac{\varepsilon }{24}\left[ -6 \nu _2^2 (9 \nu _3+17) - 6\nu _2\left( 9\nu _3^2 + 8\nu _3 - 17\right) \right. \nonumber \\&\left. +\, 27\nu _3^3 - 102\nu _3^2 + 105\nu _3-193\right] ,\end{aligned}$$
(96)
$$\begin{aligned} \mathcal {N}_{32} =&\, 2 - \frac{\varepsilon }{24} \left[ -3(9 \nu _3+2) \nu _2^2 -\nu _2 \left( 54 \nu _3^2+45\nu _3-62\right) -90 \nu _3^2+80 \nu _3-183 \right. \nonumber \\&\left. -\,2\nu _1(3\nu _2-6\nu _3+5)\right] +\frac{\varepsilon }{8}\nu _3 \left( -9 \nu _2 \nu _3+\nu _2+9 \nu _3^2-34 \nu _3 +13\right) ,\end{aligned}$$
(97)
$$\begin{aligned} \mathcal {N}_{33} =&\, -\frac{\varepsilon }{8} \sqrt{3} \nu _2 \left[ \nu _2 (4-9 \nu _3)+25 \nu _3-8\right] +\frac{\varepsilon }{8} \sqrt{3}\nu _3 \left[ \nu _2 (9 \nu _3-1)+9 \nu _3^2-18 \nu _3 \right. \nonumber \\&\left. +\,5\right] ,\end{aligned}$$
(98)
$$\begin{aligned} \mathcal {N}_{34} =&\, \frac{\varepsilon }{8} \sqrt{3} \nu _2 (9 \nu _2-13) (\nu _2+2 \nu _3-1) + \frac{\varepsilon }{8} \sqrt{3} \nu _3 (9 \nu _3-13) (2 \nu _2+\nu _3-1),\end{aligned}$$
(99)
$$\begin{aligned} \mathcal {N}_{35} =&\, \frac{3\varepsilon }{32} \sqrt{3} \nu _2 \left[ 15 \nu _2^2+\nu _2 (24 \nu _3-26) -3 \nu _3^2-34 \nu _3+16\right] \nonumber \\&+ \,\frac{3\varepsilon }{32} \sqrt{3} \nu _3[-3 \nu _2^2+\nu _2 (24 \nu _3-34) +15 \nu _3^2-26\nu _3+16],\end{aligned}$$
(100)
$$\begin{aligned} \mathcal {N}_{36} =&\, \frac{3\sqrt{3}\nu _2}{4} - \frac{\varepsilon }{32} \sqrt{3} \nu _2 \left[ 36 \nu _2^2+ \nu _2 (21 \nu _3-4) +54 \nu _3^2+53 \nu _3+103 \right. \nonumber \\&\left. +\, \nu _1(3\nu _2-6\nu _3+5)\right] - \frac{3}{4}\sqrt{3}\nu _3 + \frac{3\sqrt{3}\varepsilon }{32}\nu _3\left[ 17 \nu _2^2 + 4 \nu _2 (8 \nu _3-5) + 26 \nu _3^2 \right. \nonumber \\&\left. -\,28 \nu _3 + 52\right] ,\end{aligned}$$
(101)
$$\begin{aligned} \mathcal {N}_{37} =&\, \frac{9\nu _2}{4} - \frac{3\varepsilon }{32} \nu _2 \left[ 39\nu _2^2+\nu _2 (39\nu _3-64)+60 \nu _3^2 -37 \nu _3+150 \right. \nonumber \\&\left. +\,\nu _1(3\nu _2-6\nu _3+5)\right] + \frac{9}{4}\nu _3 - \frac{3\varepsilon }{32} \nu _3 \left[ 66\nu _2^2 + 6\nu _2(7 \nu _3-8) +36 \nu _3^2-66 \nu _3 \right. \nonumber \\&\left. +\,155\right] ,\end{aligned}$$
(102)
$$\begin{aligned} \mathcal {N}_{41} =&\, - 2- \frac{\varepsilon }{24}\left[ -6 \nu _2^2 (9 \nu _3+17) - 6\nu _2\left( 9\nu _3^2 + 8\nu _3 - 17\right) + 27\nu _3^3 - 102\nu _3^2 \right. \nonumber \\&\left. +\, 105\nu _3-193\right] ,\end{aligned}$$
(103)
$$\begin{aligned}&\mathcal {N}_{42} =\, - \frac{\varepsilon }{8}\nu _3 \left( -9 \nu _2 \nu _3+\nu _2+9 \nu _3^2-34 \nu _3 +13\right) ,\end{aligned}$$
(104)
$$\begin{aligned}&\mathcal {N}_{43} =\, - \frac{\varepsilon }{8} \sqrt{3}\nu _3 \left[ \nu _2 (9 \nu _3-1)+9 \nu _3^2-18 \nu _3+5\right] ,\end{aligned}$$
(105)
$$\begin{aligned}&\mathcal {N}_{44} =\, - \frac{\varepsilon }{8} \sqrt{3} \nu _3 (9 \nu _3-13) (2 \nu _2+\nu _3-1),\end{aligned}$$
(106)
$$\begin{aligned}&\mathcal {N}_{45} =\, - \frac{3\varepsilon }{32} \sqrt{3} \nu _3\left[ -3 \nu _2^2+\nu _2 (24 \nu _3-34) +15 \nu _3^2-26\nu _3+16\right] ,\end{aligned}$$
(107)
$$\begin{aligned}&\mathcal {N}_{46} =\, \frac{3}{4}\sqrt{3}\nu _3 -\frac{3\sqrt{3}\varepsilon }{32}\nu _3\left[ 17 \nu _2^2 + 4 \nu _2 (8 \nu _3-5) + 26 \nu _3^2-28 \nu _3 + 52\right] ,\end{aligned}$$
(108)
$$\begin{aligned}&\mathcal {N}_{47} =\, - \frac{9}{4}\nu _3 + \frac{3\varepsilon }{32} \nu _3 \left[ 66\nu _2^2 + 6\nu _2(7 \nu _3-8) +36 \nu _3^2-66 \nu _3+155\right] , \end{aligned}$$
(109)

\(\mathcal {N}_{51} = \mathcal {N}_{62} = \mathcal {N}_{73} = 1\), and the others are 0.

Appendix D: Relation between perturbations to size and orbital frequency

Equation (59) can be rewritten as

$$\begin{aligned} \varvec{\chi } =&\,QE_1Q^{-1}\varvec{\chi }_0 + e^{\omega _{N}t\lambda _{1+}}QE_2Q^{-1}\varvec{\chi }_0 + e^{\omega _{N}t\lambda _{1-}}QE_3Q^{-1}\varvec{\chi }_0 + e^{\omega _{N}t\lambda _{2+}}QE_4Q^{-1}\varvec{\chi }_0 \nonumber \\&+\, e^{\omega _{N}t\lambda _{2-}}QE_5Q^{-1}\varvec{\chi }_0 + e^{\omega _{N}t\lambda _{3+}}QE_6Q^{-1}\varvec{\chi }_0 + e^{\omega _{N}t\lambda _{3-}}QE_7Q^{-1}\varvec{\chi }_0, \end{aligned}$$
(110)

where \(E_i\) is a \(7 \times 7\) matrix with components

$$\begin{aligned} E_i = \left\{ \begin{array}{cl} 1 &{} (\text {for the } ii\ \text {component}),\\ 0 &{} (\text {for the others}). \end{array} \right. \end{aligned}$$
(111)

The regular matrix Q is given by

$$\begin{aligned} Q=(\varvec{v}\,\, \varvec{v}_{1+}\,\, \varvec{v}_{1-}\,\, \varvec{v}_{2+}\,\, \varvec{v}_{2-}\,\, \varvec{v}_{3+}\,\, \varvec{v}_{3-}), \end{aligned}$$
(112)

where \(\varvec{v}_a\) are the eigenvectors corresponding to the eigenvalues \(\lambda _a\), and \(\varvec{v}\) is the eigenvector corresponding to the zero eigenvalue. Therefore, we have

$$\begin{aligned} \left\{ \begin{array}{l} QE_1 =(\varvec{v}\,\,\varvec{0}\,\,\varvec{0}\,\,\varvec{0}\,\,\varvec{0}\,\,\varvec{0}\,\,\varvec{0}),\\ QE_2 =(\varvec{0}\,\,\varvec{v}_{1+}\,\,\varvec{0}\,\,\varvec{0}\,\,\varvec{0}\,\,\varvec{0}\,\,\varvec{0}),\\ QE_3 =(\varvec{0}\,\,\varvec{0}\,\,\varvec{v}_{1-}\,\,\varvec{0}\,\,\varvec{0}\,\,\varvec{0}\,\,\varvec{0}),\\ QE_4 =(\varvec{0}\,\,\varvec{0}\,\,\varvec{0}\,\,\varvec{v}_{2+}\,\,\varvec{0}\,\,\varvec{0}\,\,\varvec{0}),\\ QE_5 =(\varvec{0}\,\,\varvec{0}\,\,\varvec{0}\,\,\varvec{0}\,\,\varvec{v}_{2-}\,\,\varvec{0}\,\,\varvec{0}),\\ QE_6 =(\varvec{0}\,\,\varvec{0}\,\,\varvec{0}\,\,\varvec{0}\,\,\varvec{0}\,\,\varvec{v}_{3+}\,\,\varvec{0}),\\ QE_7 =(\varvec{0}\,\,\varvec{0}\,\,\varvec{0}\,\,\varvec{0}\,\,\varvec{0}\,\,\varvec{0}\,\,\varvec{v}_{3-}), \end{array} \right. \end{aligned}$$
(113)

and Eq. (110) is calculated as

$$\begin{aligned} \varvec{\chi } =&\, c_1\varvec{v} + e^{\omega _{N}t\lambda _{1+}}c_2\varvec{v}_{1+} + e^{\omega _{N}t\lambda _{1-}}c_3\varvec{v}_{1-} \nonumber \\&+\, e^{\omega _{N}t\lambda _{2+}}c_4\varvec{v}_{2+} + e^{\omega _{N}t\lambda _{2-}}c_5\varvec{v}_{2-} + e^{\omega _{N}t\lambda _{3+}}c_6\varvec{v}_{3+} + e^{\omega _{N}t\lambda _{3-}}c_7\varvec{v}_{3-}, \end{aligned}$$
(114)

where \(\varvec{c}=(c_1, c_2, \ldots , c_7)\equiv Q^{-1}\varvec{\chi }_0\). By setting the coefficients as

$$\begin{aligned} c_1\varvec{v}&\,\equiv (\ldots , C_{41}, C_{11}, C_{21}, C_{31}), \end{aligned}$$
(115)
$$\begin{aligned} c_2\varvec{v}_{1+}&\,\equiv (\ldots , C_{42}, C_{12}, C_{22}, C_{32}), \end{aligned}$$
(116)
$$\begin{aligned} c_3\varvec{v}_{1-}&\,\equiv (\ldots , C_{43}, C_{13}, C_{23}, C_{33}), \end{aligned}$$
(117)
$$\begin{aligned} c_4\varvec{v}_{2+}&\,\equiv (\ldots , C_{44}, C_{14}, C_{24}, C_{34}), \end{aligned}$$
(118)
$$\begin{aligned} c_5\varvec{v}_{2-}&\,\equiv (\ldots , C_{45}, C_{15}, C_{25}, C_{35}), \end{aligned}$$
(119)
$$\begin{aligned} c_6\varvec{v}_{3+}&\,\equiv (\ldots , C_{46}, C_{16}, C_{26}, C_{36}), \end{aligned}$$
(120)
$$\begin{aligned} c_7\varvec{v}_{3-}&\,\equiv (\ldots , C_{47}, C_{17}, C_{27}, C_{37}), \end{aligned}$$
(121)

we obtain the solution of Eq. (60).

In order to consider \(C_{41}\), which corresponds to the unique secular term, therefore, let us focus on the zero eigenvector \(\varvec{v}\). By the definition of the zero eigenvector, we have the equation

$$\begin{aligned} \mathcal {N}\varvec{v}=\varvec{0}. \end{aligned}$$
(122)

By straightforward calculations, we obtain the equations for the components of \(\varvec{v}\) as

$$\begin{aligned}&\displaystyle c_1 \varvec{v} \,= (0, 0, 0, C_{41}, C_{11}, C_{21}, C_{31}), \end{aligned}$$
(123)
$$\begin{aligned}&\displaystyle C_{21} \,= 0, \end{aligned}$$
(124)
$$\begin{aligned}&\displaystyle C_{31} \,= - \frac{\sqrt{3}}{24} \left( -10\nu _1^2+5\nu _2^2+5\nu _3^2+4\nu _2\nu _3-2\nu _1\nu _2 - 2\nu _1\nu _3 \right) \varepsilon C_{11}, \end{aligned}$$
(125)
$$\begin{aligned}&\displaystyle C_{41}\,= - \frac{3}{2} \left[ 1 - \frac{5}{48} (29 - 14 V) \varepsilon \right] C_{11}. \end{aligned}$$
(126)

Therefore, \(C_{41}\) is not independent of \(C_{11}\), and hence, the change in the size corresponding to \(C_{11}\) leads to the change in the orbital frequency \(C_{41}\) regarding the energy and angular momentum changes.

In fact, Eq. (126) can be derived from Eqs. (18)–(20). Let us consider a perturbation \(\ell \rightarrow \ell (1 + x)\) in Eq. (19). This leads to the perturbation of \(\varepsilon \) as

$$\begin{aligned} \varepsilon \rightarrow \varepsilon (1 - x), \end{aligned}$$
(127)

at the leading order. Therefore, the orbital frequency is perturbed as

$$\begin{aligned} \omega \rightarrow \omega _{N} \left[ 1 + \tilde{\omega }_{PN} - \frac{3}{2} \left( 1 + \frac{5}{3} \tilde{\omega }_{PN} \right) x \right] . \end{aligned}$$
(128)

Replacing \(x \rightarrow C_{11}\) in the last term, we obtain the perturbations to the orbital frequency equivalent to Eq. (126).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamada, K., Tsuchiya, T. The linear stability of the post-Newtonian triangular equilibrium in the three-body problem. Celest Mech Dyn Astr 129, 487–507 (2017). https://doi.org/10.1007/s10569-017-9781-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-017-9781-9

Keywords

Navigation