Skip to main content
Log in

Global search for low-thrust transfers to the Moon in the planar circular restricted three-body problem

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

This paper globally searches for low-thrust transfers to the Moon in the planar, circular, restricted, three-body problem. Propellant-mass optimal trajectories are computed with an indirect method, which implements the necessary conditions of optimality based on the Pontryagin principle. We present techniques to reduce the dimension of the set over which the required initial costates are searched. We obtain a wide range of Pareto solutions in terms of time of flight and mass consumption. Using the Tisserand–Poincaré graph, a number of solutions are shown to exploit high-altitude lunar flybys to reduce fuel consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Abraham, A.J., Spencer, D.B., Hart, T.J.: Optimization of preliminary low-thrust trajectories from GEO-energy orbits to Earth–Moon, \(L_1\), Lagrange point orbits using particle swarm optimization. In: AAS/AIAA Astrodynamics Specialist Conference, AAS 13-925, Hilton Head, (2013)

  • Betts, J.T., Erb, S.O.: Optimal low thrust trajectories to the Moon. SIAM J. Appl. Dyn. Syst. 2, 144–170 (2003). doi:10.1137/S1111111102409080

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Belbruno, E., Topputo, F., Gidea, M.: Resonance transitions associated to weak capture in the restricted three-body problem. Adv. Space. Res. 42, 1330–1351 (2008). doi:10.1016/j.asr.2008.01.018

    Article  ADS  Google Scholar 

  • Caillau, J.B., Daoud, B., Gergaud, J.: Minimum fuel control of the planar circular restricted three-body problem. Celest. Mech. Dyn. Astr. 114, 137–150 (2012). doi:10.1007/s10569-012-9443-x

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Campagnola, S., Russell, R.P.: Endgame problem part 2: multi-body technique and T–P graph. J. Guid. Control Dyn. 33, 476–486 (2010). doi:10.2514/1.44290

    Article  ADS  Google Scholar 

  • Campagnola, S., Skerritt, P., Russell, R.P.: Flybys in the planar, circular, restricted, three-body problem. Celest. Mech. Dyn. Astr. 113, 343–368 (2012). doi:10.1007/s10569-012-9427-x

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Campagnola, S., Boutonnet, A., Schoenmaekers, J., Grebow, D.J., Petropoulos, A.E.: Tisserand–leveraging transfer. J. Guid. Control Dyn. 37, 1202–1210 (2014). doi:10.2514/1.62369

    Article  ADS  Google Scholar 

  • Folta, D.C., Bosanac, N., Cox, A., Howell, K.C.: The Lunar IceCube mission design: construction of feasible transfer trajectories with a constrained departure. AAS/AIAA Space Flight Mechanics Meeting, AAS 16-285, Napa, (2016)

  • Funase, R., Koizumi, H., Nakasuka, S., Kawakatsu, Y., Fukushima, Y., Tomiki, A., et al.: 50kg-class deep space exploration technology demonstration micro-spacecraft PROCYON. In: 28th Annual AIAA/USU Conference on Small Satellites, SSC14-VI-3, (2014)

  • Grover, P., Ross, S.D.: Designing trajectories in a planet-moon environment using the controlled Keplerian map. J. Guid. Control Dyn. 32, 437–444 (2009). doi:10.2514/1.38320

    Article  ADS  Google Scholar 

  • Jerg, S., Junge, O., Ross, S.D.: Optimal capture trajectories using multiple gravity assists. Commun. Nonlinear Sci. Numer. Simul. 14, 4168–4175 (2009). doi:10.1016/j.cnsns.2008.12.009

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Kawaguchi, J., Fujiwara, A., Uesugi, T.: Hayabusa-Its technology and science accomplishment summary and Hayabusa-2. Acta Astronaut. 62, 639–647 (2008). doi:10.1016/j.actaastro.2008.01.028

    Article  ADS  Google Scholar 

  • Kawakatsu, Y., et al.: DESTINY mission proposal, ISAS/JAXA Technical Note (2014)

  • Kluever, C.A., Pierson, B.L.: Optimal low-thrust three-dimensional Earth–Moon trajectories. J. Guid. Control Dyn. 18, 830–837 (1995). doi:10.2514/3.21466

    Article  ADS  Google Scholar 

  • Koon, W.S., Lo, M.W., Marsden, J.E., Ross, S.D.: Dynamical Systems, the Three-Body Problem and Space Mission Design. Marsden Books, Wellington (2011)

    MATH  Google Scholar 

  • Lantoine, G., Russell, R.P., Campagnola, S.: Optimization of low-energy resonant hopping transfers between planetary moons. Acta Astronaut. 68, 1361–1378 (2011). doi:10.1016/j.actaastro.2010.09.021

    Article  ADS  Google Scholar 

  • Lawden, D.F.: Optimal Trajectories for Space Navigation. Butterworths, London (1963)

    MATH  Google Scholar 

  • Mingotti, G., Topputo, F., Bernelli-Zazzera, F.: Low-energy, low-thrust transfers to the Moon. Celest. Mech. Dyn. Astr. 105, 61–74 (2009). doi:10.1007/s10569-009-9220-7

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Ohndorf, A., Bachwald, B., Gill, E.: Optimization of low-thrust Earth–Moon transfers using evolutionary neurocontrol. In: IEEE Congress on Evolutionary Computation, Trondheim, (2009)

  • Ozimek, M.T., Howell, K.C.: Low-thrust transfers in the Earth–Moon system, including applications to libration point orbits. J. Guid. Control Dyn. 33, 533–549 (2010). doi:10.2514/1.43179

    Article  ADS  Google Scholar 

  • Pernicka, H.J., Scarberry, D.P., Marsh, S.M., Sweetser, T.H.: A search for low \(\Delta v\) Earth-to-Moon trajectories. J. Astronaut. Sci. 43, 77–88 (1995)

    Google Scholar 

  • Pontryagin, L.S.: Mathematical Theory of Optimal Processes. CRC Press, Boca Raton (1987)

    MATH  Google Scholar 

  • Racca, G.D., Marini, A., Stagnaro, L., van Dooren, J., di Napoli, L., Foing, B.H., et al.: SMART-1 mission description and development status. Planet. Space Sci. 50, 1323–1337 (2002). doi:10.1016/S0032-0633(02)00123-X

    Article  ADS  Google Scholar 

  • Rayman, M.D., Varghese, P., Lehman, D.H., Livesay, L.L.: Results from the deep space 1 technology validation mission. Acta Astronaut. 47, 475–487 (2000). doi:10.1016/S0094-5765(00)00087-4

    Article  ADS  Google Scholar 

  • Ross, S.D., Lo, M.W.: Design of a multi-moon orbiter. In: AAS/AIAA Space Flight Mechanics Meeting, AAS 03-143, Puerto Rico, (2003)

  • Ross, S.D., Scheeres, D.J.: Multiple gravity assists, capture, and escape in the restricted three-body problem. SIAM J. Appl. Dyn. Syst. 6, 576–596 (2007). doi:10.1137/060663374

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Russell, R.P.: Primer vector theory applied to global low-thrust trade studies. J. Guid. Control Dyn. 30, 460–472 (2007). doi:10.2514/1.22984

    Article  ADS  Google Scholar 

  • Russell, C.T., Barucci, M.A., Binzel, R.P., Capria, M.T., Christensen, U., Coradini, A., et al.: Explore the asteroid belt with ion propulsion: dawn mission history, status and plans. Adv. Space. Res. 40, 193–201 (2007). doi:10.1016/j.asr.2007.05.083

    Article  ADS  Google Scholar 

  • Szebehely, V.: Theory of Orbits: The Restricted Problem of Three Bodies. Academic Press Inc, New York (1967)

    MATH  Google Scholar 

  • Topputo, F.: Low-thrust non-Keplerian orbits: analysis, design, and control. Disseartation, Politecnico di Miano (2007)

  • Topputo, F., Vasile, M., Bernelli-Zazzera, F.: Earth-to-Moon low energy transfers targeting \(L_1\) hyperbolic transit orbits. Ann. N.Y. Acad. Sci. 1065, 55–76 (2005). doi:10.1196/annals.1370.025

  • Topputo, F., Belbruno, E., Gidea, M.: Resonant motion, ballistic escape, and their applications in astrodynamics. Adv. Space. Res. 42, 1318–1329 (2008). doi:10.1016/j.asr.2008.01.017

    Article  ADS  Google Scholar 

  • Zhang, C., Topputo, F., Bernelli-Zazzera, F., Zhao, Y.: Low-thrust minimum-fuel optimization in the circular restricted three-body problem. J. Guid. Control Dyn. 38, 1501–1510 (2015). doi:10.2514/1.G001080

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This study has been partially supported by Grant-in-Aid for JSPS Fellows No. 15J07090, and by JSPS Grant-in-Aid, No. 26800207.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenta Oshima.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oshima, K., Campagnola, S. & Yanao, T. Global search for low-thrust transfers to the Moon in the planar circular restricted three-body problem. Celest Mech Dyn Astr 128, 303–322 (2017). https://doi.org/10.1007/s10569-016-9748-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-016-9748-2

Keywords

Navigation