Skip to main content
Log in

Dynamics of the 3/1 planetary mean-motion resonance: an application to the HD60532 b-c planetary system

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

In this paper, we use a semi-analytical approach to analyze the global structure of the phase space of the planar planetary 3/1 mean-motion resonance. The case where the outer planet is more massive than its inner companion is considered. We show that the resonant dynamics can be described using two fundamental parameters, the total angular momentum and the spacing parameter. The topology of the Hamiltonian function describing the resonant behaviour is investigated on a large domain of the phase space without time-expensive numerical integrations of the equations of motion, and without any restriction on the magnitude of the planetary eccentricities. The families of the Apsidal Corotation Resonances (ACR) parameterized by the planetary mass ratio are obtained and their stability is analyzed. The main dynamical features in the domains around the ACR are also investigated in detail by means of spectral analysis techniques, which allow us to detect the regions of different regimes of motion of resonant systems. The construction of dynamical maps for various values of the total angular momentum shows the evolution of domains of stable motion with the eccentricities, identifying possible configurations suitable for exoplanetary systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Antoniadou, K.I., Voyatzis, G.: Resonant periodic orbits in the exoplanetary systems. Astrophys. Space. Sci. 349, 657–676 (2014)

    Article  ADS  Google Scholar 

  • Beauge, C., Ferraz-Mello, S.: Resonance trapping in the primordial solar nebula: the case of a Stokes drag dissipation. Icarus 103, 301–318 (1993)

    Article  ADS  Google Scholar 

  • Beaugé, C., Ferraz-Mello, S., Michtchenko, T.A.: Extrasolar planets in mean-motion resonance: apses alignment and asymmetric stationary solutions. Astrophys. J. 593, 1124–1133 (2003)

    Article  ADS  Google Scholar 

  • Beaugé, C., Michtchenko, T.A.: Modelling the high-eccentricity planetary three-body problem. Application to the GJ876 planetary system. Mon. Not. R. Astron. Soc. 341, 760–770 (2003)

    Article  ADS  Google Scholar 

  • Beaugé, C., Michtchenko, T.A., Ferraz-Mello, S.: Planetary migration and extrasolar planets in the 2/1 mean-motion resonance. Mon. Not. R. Astron. Soc. 365, 1160–1170 (2006)

    Article  ADS  Google Scholar 

  • Beaugé, C., Ferraz-Mello, S., Michtchenko, T.A.: Multi-planet extrasolar systems—detection and dynamics. Res. Astron. Astrophys. 12, 1044–1080 (2012)

    Article  ADS  Google Scholar 

  • Bonfils, X., et al.: The HARPS search for southern extra-solar planets. XXXIV. A planetary system around the nearby M dwarf GJ 163, with a super-Earth possibly in the habitable zone. Astron. Astrophys. 556, A110 (2013)

    Article  ADS  Google Scholar 

  • Callegari Jr, N., Michtchenko, T.A., Ferraz-Mello, S.: Dynamics of two planets in the 2/1 mean-motion resonance. Celest. Mech. Dyn. Astron. 89, 201–234 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Callegari, N., Ferraz-Mello, S., Michtchenko, T.A.: Dynamics of two planets in the 3/2 mean-motion resonance: application to the planetary system of the pulsar PSR B1257+12. Celest. Mech. Dyn. Astron. 94, 381–397 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Dawson, R.I., Fabrycky, D.C.: Radial velocity planets de-aliased: a new, short period for super-Earth 55 Cnc e. Astrophys. J. 722, 937–953 (2010)

    Article  ADS  Google Scholar 

  • Desort, M., Lagrange, A.-M., Galland, F., Beust, H., Udry, S., Mayor, M., Lo Curto, G.: Extrasolar planets and brown dwarfs around A-F type stars. V. A planetary system found with HARPS around the F6IV-V star HD 60532. Astron. Astrophys. 491, 883–888 (2008)

  • Ferraz-Mello, S.: The high-eccentricity libration of the Hildas. Astron. J. 96, 400–408 (1988)

    Article  ADS  Google Scholar 

  • Ferraz-Mello, S., Beaugé, C., Michtchenko, T.A.: Evolution of migrating planet pairs in resonance. Celest. Mech. Dyn. Astron. 87, 99–112 (2003)

    Article  ADS  Google Scholar 

  • Ferraz-Mello, S., Michtchenko, T.A., Beaugé, C., Callegari, N.: Extrasolar planetary systems. In: Dvorak et al. (eds.) Chaos and Stability in Planetary Systems. Lecture Notes in Physics, vol. 683, pp. 219–271. Springer (2005)

  • Gautier III, T.N., et al.: Kepler-20: a sun-like star with three sub-neptune exoplanets and two earth-size candidates. Astrophys. J. 749, 15 (2012)

    Article  ADS  Google Scholar 

  • Goldreich, P., Tremaine, S.: The excitation of density waves at the Lindblad and corotation resonances by an external potential. Astrophys. J. 233, 857–871 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  • Goldreich, P., Tremaine, S.: Disk–satellite interactions. Astrophys. J. 241, 425–441 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  • Gomes, R.S.: The effect of nonconservative forces on resonance lock: stability and instability. Icarus 115, 47–59 (1995a)

    Article  ADS  Google Scholar 

  • Gomes, R.S.: Resonance trapping and evolution of particles subject to Poynting–Robertson drag: adiabatic and non-adiabatic approaches. Celest. Mech. Dyn. Astron. 61, 97–113 (1995b)

    Article  ADS  MATH  Google Scholar 

  • Han, E., Wang, S.X., Wright, J.T., Feng, Y.K., Zhao, M., Fakhouri, O., Brown, J.I., Hancock, C.: Exoplanet Orbit Database. II. Updates to Exoplanets.org. Publ. Astron. Soc. Pac. 126, 827–837 (2014)

    Article  ADS  Google Scholar 

  • Kane, S.R., Gelino, D.M.: On the inclination and habitability of the HD 10180 system. Astrophys. J. 792, 111 (2014)

    Article  ADS  Google Scholar 

  • Kley, W.: On the migration of a system of protoplanets. Mon. Not. R. Astron. Soc. 313, L47–L51 (2000)

    Article  ADS  Google Scholar 

  • Kley, W., Lee, M.H., Murray, N., Peale, S.J.: Modeling the resonant planetary system GJ 876. Astron. Astrophys. 437, 727–742 (2005)

    Article  ADS  Google Scholar 

  • Laskar, J.: Analytical Framework in Poincaré Variables for the Motion of the Solar System, In: Roy, A.E. (ed.) Predictability, Stability, and Chaos in N-Body Dynamical Systems, pp. 93–114. Plenum Press, New York (1991)

  • Laskar, J., Correia, A.C.M.: HD 60532, a planetary system in a 3:1 mean motion resonance. Astron. Astrophys. 496, L5–L8 (2009)

    Article  ADS  Google Scholar 

  • Laskar, J., Robutel, P.: Stability of the planetary three-body problem. I. Expansion of the planetary Hamiltonian. Celest. Mech. Dyn. Astron. 62, 193–217 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Lee, M.H.: Diversity and origin of 2:1 orbital resonances in extrasolar planetary systems. Astrophys. J. 611, 517–527 (2004)

    Article  ADS  Google Scholar 

  • Lin, D.N.C., Papaloizou, J.: Tidal torques on accretion discs in binary systems with extreme mass ratios. Mon. Not. R. Astron. Soc. 186, 799–812 (1979)

    Article  ADS  MATH  Google Scholar 

  • Lovis, C., et al.: The HARPS search for southern extra-solar planets. XXVIII. Up to seven planets orbiting HD 10180: probing the architecture of low-mass planetary systems. Astron. Astrophys. 528, A112 (2011)

    Article  ADS  Google Scholar 

  • Marzari, F., Scholl, H., Tricarico, P.: Frequency map analysis of the 3/1 resonance between planets b and c in the 55 Cancri system. Astron. Astrophys. 442, 359–364 (2005)

    Article  ADS  Google Scholar 

  • Mayor, M., et al.: The HARPS search for southern extra-solar planets XXXIV. Occurrence, mass distribution and orbital properties of super-Earths and Neptune-mass planets, ArXiv e-prints arXiv:1109.2497 (2011)

  • Michtchenko, T.A., Ferraz-Mello, S.: Comparative study of the asteroidal motion in the 3:2 and 2:1 resonances with Jupiter. I. Planar model. Astron. Astrophys. 303, 945 (1995)

    ADS  Google Scholar 

  • Michtchenko, T.A., Ferraz-Mello, S.: Modeling the 5:2 mean-motion resonance in the Jupiter–Saturn planetary system. Icarus 149, 357–374 (2001a)

    Article  ADS  Google Scholar 

  • Michtchenko, Ferraz-Mello, : Resonant structure of the outer solar system in the neighborhood of the planets. Astron. J. 122, 474–481 (2001b)

    Article  ADS  Google Scholar 

  • Michtchenko, T.A., Lazzaro, D., Ferraz-Mello, S., Roig, F.: Origin of the basaltic asteroid 1459 Magnya: a dynamical and mineralogical study of the outer main belt. Icarus 158, 343–359 (2002)

    Article  ADS  Google Scholar 

  • Michtchenko, T.A., Beaugé, C., Ferraz-Mello, S.: Stationary orbits in resonant extrasolar planetary systems. Celest. Mech. Dyn. Astron. 94, 411–432 (2006)

    Article  ADS  MATH  Google Scholar 

  • Michtchenko, T.A., Beaugé, C., Ferraz-Mello, S.: Dynamic portrait of the planetary 2/1 mean-motion resonance—I. Systems with a more massive outer planet. Mon. Not. R. Astron. Soc. 387, 747–758 (2008a)

  • Michtchenko, T.A., Beaugé, C., Ferraz-Mello, S.: Dynamic portrait of the planetary 2/1 mean-motion resonance—II. Systems with a more massive inner planet. Mon. Not. R. Astron. Soc. 391, 215–227 (2008b)

    Article  ADS  Google Scholar 

  • Michtchenko, T.A., Rodríguez, A.: Modelling the secular evolution of migrating planet pairs. Mon. Not. R. Astron. Soc. 415, 2275–2292 (2011)

    Article  ADS  Google Scholar 

  • Moons, M., Morbidelli, A.: The main mean motion commensurabilities in the planar circular and elliptic problem. Celest. Mech. Dyn. Astron. 57, 99–108 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Nelson, B.E., Ford, E.B., Wright, J.T., et al.: The 55 Cancri planetary system: fully self-consistent N-body constraints and a dynamical analysis. Mon. Not. R. Astron. Soc. 441, 442–451 (2014)

    Article  ADS  Google Scholar 

  • Sándor, Z., Kley, W.: Formation of the resonant system HD 60532. Astron. Astrophys. 517, A31 (2010)

    Article  Google Scholar 

  • Snellgrove, M.D., Papaloizou, J.C.B., Nelson, R.P.: On disc driven inward migration of resonantly coupled planets with application to the system around GJ876. Astron. Astrophys. 374, 1092–1099 (2001)

    Article  ADS  Google Scholar 

  • Tadeu dos Santos, M., Silva, G.G., Ferraz-Mello, S., Michtchenko, T.A.: A new analysis of the GJ581 extrasolar planetary system. Celest. Mech. Dyn. Astron. 113, 49–62 (2012)

    Article  ADS  Google Scholar 

  • Tuomi, M.: Evidence for nine planets in the HD 10180 system. Astron. Astrophys. 543, A52 (2012)

    Article  ADS  Google Scholar 

  • Voyatzis, G., Hadjidemetriou, J.D.: Symmetric and asymmetric librations in planetary and satellite systems at the 2/1 resonance. Celest. Mech. Dyn. Astron. 93, 263–294 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Voyatzis, G., Hadjidemetriou, J.D.: Symmetric and asymmetric 3:1 resonant periodic orbits with an application to the 55Cnc extra-solar system. Celest. Mech. Dyn. Astron. 95, 259–271 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Voyatzis, G.: Chaos, order, and periodic orbits in 3:1 resonant planetary dynamics. Astrophys. J. 675(1), 802–816 (2008)

    Article  ADS  Google Scholar 

  • Zhou, L.Y., Lehto, H.J., Zheng, J.Q.: The 3:1 resonance in the 55 Cancri. Order Chaos Stellar Planet. Syst. 316, 155 (2004)

    ADS  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Brazilian National Research Council - CNPq (Grant 153713/2010-0). The authors are grateful to Prof. Dr. S. Ferraz-Mello, Dr. J. Correa-Otto, Dr. E. Andrade-Ines, and Dr. C. Beaugé, for numerous suggestions and corrections to this paper. This work has made use of the facilities of the Computation Center of the University of São Paulo (LCCA-USP) and of the Laboratory of Astroinformatics (IAG/USP, NAT/Unicsul), whose purchase was made possible by the Brazilian agency FAPESP (Grant 2009/54006-4) and the INCT-A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. Alves.

Appendix

Appendix

The explicit expressions for the coefficients of the analytical first-order expansion of the Hamiltonian (10) of the 3/1 MMR:

$$\begin{aligned} A= & {} - \dfrac{M_1}{2 J_1^3}+\dfrac{3}{2}\dfrac{M_2}{2 J_2^3}, \qquad \qquad B= - \dfrac{3}{8}\left( \dfrac{1}{2}\right) ^2\dfrac{M_1}{J_1^4}, \nonumber \\ C= & {} -c_2 \dfrac{M_3}{J_1 J_2^2}+\dfrac{3}{2}c_1 \dfrac{M_1}{J_2^3}, \qquad D =- c_3 \dfrac{M_3}{J_2^3}+\dfrac{3}{2}c_1 \dfrac{M_3}{J_2^3},\nonumber \\ E= & {} -c_4\dfrac{M_3}{J_2^2 \sqrt{J_1 J_2}}, \qquad \qquad \, F_1 = -\dfrac{1}{2}c_5\dfrac{M_3}{J_2^2 J_1},\\ F_2= & {} -\dfrac{1}{2}c_6\dfrac{M_3}{J_2^3},\qquad \qquad \qquad F_3 = \dfrac{1}{2}c_7\dfrac{M_3}{J_2^2\sqrt{J_1 J_2}},\nonumber \end{aligned}$$
(12)

where \(M_1 = \mu _1^2 m_1^{\prime 3}\), \(M_2 = \mu _2^2 m_2^{\prime ^3} \) and \( M_3 = m_1 M_2/m_0\), while \(c_i\) are the Laplace coefficients:

$$\begin{aligned} c_0= & {} -\dfrac{1}{2}\alpha b_{\frac{3}{2}}^{\left( 1\right) }\left( \alpha \right) ,\nonumber \\ c_1= & {} \dfrac{1}{2}b_{\frac{1}{2}}^{\left( 0\right) }\left( \alpha \right) ,\nonumber \\ c_2= & {} \dfrac{1}{8}\left[ 2\alpha D_\alpha +\alpha ^2 D_\alpha ^2\right] b_{\frac{1}{2}}^{\left( 0\right) },\\ c_4= & {} \dfrac{1}{4}\left[ 2-2\alpha D_\alpha -\alpha ^2 D_\alpha ^2\right] b_{\frac{1}{2}}^{\left( 1\right) },\nonumber \\ c_5= & {} \dfrac{1}{8}\left[ 21+10\alpha D_\alpha +\alpha ^2 D_\alpha ^2\right] b_{1/2}^{\left( 3\right) },\nonumber \\ c_6= & {} \dfrac{1}{4}\left[ -20-10\alpha D_\alpha -\alpha ^2 D_\alpha ^2\right] b_{1/2}^{\left( 2\right) },\nonumber \\ c_7= & {} \dfrac{1}{4}\left[ 17+10\alpha D_\alpha +\alpha ^2 D_\alpha ^2\right] b_{1/2}^{\left( 1\right) }-\dfrac{27}{8}\alpha ,\nonumber \end{aligned}$$
(13)

where \(D_\alpha ^n\) are n-th order derivative in \(\alpha =a_1/a_2\). The coefficients \(b_i\) are obtained by the series:

$$\begin{aligned} \dfrac{1}{2}b_s^{\left( j\right) }\left( \alpha \right)= & {} \dfrac{s\left( s+1\right) \cdots \left( s+j-1\right) }{1\cdot 2\cdot 3\cdots j}\alpha ^j\\&\times \left[ 1+\dfrac{s\left( s+j\right) }{1\left( j+1\right) }\alpha ^2+\dfrac{s\left( s+1\right) \left( s+j\right) \left( s+j+1\right) }{1\cdot 2\left( j+1\right) \left( j+2\right) }\alpha ^4+ \cdots \right] .\nonumber \end{aligned}$$
(14)

when \(j=0\),

$$\begin{aligned} \dfrac{s\left( s+1\right) \cdots \left( s+j-1\right) }{1\cdot 2\cdot 3\cdots j}\alpha ^j= 1, \end{aligned}$$
(15)

and the series is convergent for \(\alpha <1\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alves, A.J., Michtchenko, T.A. & Tadeu dos Santos, M. Dynamics of the 3/1 planetary mean-motion resonance: an application to the HD60532 b-c planetary system. Celest Mech Dyn Astr 124, 311–334 (2016). https://doi.org/10.1007/s10569-015-9664-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-015-9664-x

Keywords

Navigation