Skip to main content
Log in

Splendid isolation: local uniqueness of the centered co-circular relative equilibria in the N-body problem

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

We study the neighborhood of the equal mass regular polygon relative equilibria in the N-body probem, and show that this relative equilibirum is isolated among the co-circular configurations (in which each point lies on a common circle) for which the center of mass is located at the center of the common circle. It is also isolated in the sense that a sufficiently small mass cannot be added to the common circle to form a \(N+1\)-body relative equilibrium. These results provide strong evidence for a conjecture that the equal mass regular polygon is the only co-circular relative equilibrium with its center of mass located at the center of the common circle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albouy, A., Cabral, H.E., Santos, A.A.: Some problems on the classical n-body problem. Celest. Mech. Dyn. Astron. 113, 369–375 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  • Barutello, V., Terracini, S.: Action minimizing orbits in the n-body problem with simple choreography constraint. Nonlinearity 17, 2015 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Barutello, V., Ferrario, D.L., Terracini, S.: Symmetry groups of the planar three-body problem and action-minimizing trajectories. Arch. Ration. Mech. Anal. 190, 189–226 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Checiner, A., Gerver, J., Montgomery, R., Simo, C.: Simple choreographies of \(N\) bodies: a preliminary study. In: Newton, P., Holmes, P., Weinstein, Alan (eds.) Geometry, Mechanics and Dynamics, pp. 287–308. Springer, New York (2002)

    Chapter  Google Scholar 

  • Chen, K.-C.: Action-minimizing orbits in the parallelogram four-body problem with equal masses. Arch. Ration. Mech. Anal. 158, 293–318 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Chenciner, A.: New advances in celestial mechanics and Hamiltonian systems. Are there Perverse Choreographies?. Kluwer/Plenum, New York (2004)

    Chapter  Google Scholar 

  • Chenciner, A., Montgomery, R.: A remarkable periodic solution of the three-body problem in the case of equal masses. Ann. Math. 153, 881–902 (2000)

    Article  MathSciNet  Google Scholar 

  • Chenciner, A., Venturelli, A.: Minima de l’intégrale d’action du probléme Newtoniende 4 corps de masses égales dans \(R^3\): orbites ‘hip-hop’. Celest. Mech. Dyn. Astron. 77, 139–151 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Cors, J.M., Hall, G.R., Roberts, G.E.: Uniqueness results for co-circular central configurations for power-law potentials. Phys. D Nonlinear Phenom. 280, 44–47 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  • Ferrario, D.J., Terracini, S.: On the existence of collisionless equivariant minimizers for the classical n-body problem. Invent. Math. 155, 305–362 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Hampton, M.: Co-circular central configurations in the four-body problem. Equadiff 2003, 993–998 (2003)

    Google Scholar 

  • Helmholtz, H.: Uber Integrale der hydrodynamischen Gleichungen, Welche den Wirbelbewegungen entsprechen. Crelle’s J. für Math. 55, 25–55 (1858). English translation by P. G. Tait, P.G. On the integrals of the hydrodynamical equations which express vortex-motion, Philosophical Magazine (1867), 485–51

    Article  MathSciNet  MATH  Google Scholar 

  • Longley, W.R.: Some particular solutions in the problem of \(n\)-bodies. Bull. Am. Math. Soc. 7, 324–335 (1907)

    Article  MathSciNet  Google Scholar 

  • Maxwell, J.C.: in Maxwell on Saturn’s rings. MIT press, Cambridge (1983)

  • Moeckel, R.: Linear stability of relative equilibria with a dominant mass. J. Dyn. Diff. Equ. 6, 37–51 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  • Newton, I.: Philosophi Naturalis Principia Mathematica. Royal Society, London (1687)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marshall Hampton.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hampton, M. Splendid isolation: local uniqueness of the centered co-circular relative equilibria in the N-body problem. Celest Mech Dyn Astr 124, 145–153 (2016). https://doi.org/10.1007/s10569-015-9656-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-015-9656-x

Keywords

Navigation