Skip to main content
Log in

Analytical solution from vector potentials for the gravitational field of a general polyhedron

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

Closed form solutions in terms of elementary functions are given for the Newtonian gravitational field and potential of a general constant density polyhedron, using a gravitational vector potential formulation. The solution constants are given in terms of scalar and vector products involving the position vectors of the field point and the polyhedron’s vertices, giving one analytical expression for each edge of the polyhedron. It is shown that in this vector potential formulation, the gravitational problem is related to the point-in-polygon problem of computational geometry. The solution is derived using a new vector theorem giving the integral over a flat surface of a scalar potential as a line integral of a vector potential around its boundary. The method is also valid in the interior of the polyhedron and can be extended to polyhedra with linear spatial variation of the density. Numerical results are compared with results in the literature and detailed results are given for the five regular Platonic polyhedra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Arfken, G.B., Weber, H.J.: Mathematical Methods for Physicists, 4th edn. Academic, San Diego (1995)

    Google Scholar 

  • Barnett, C.T.: Theoretical modeling of the magnetic and gravitational fields of an arbitrary shaped three dimensional body. Geophysics 41, 1353–1365 (1976)

    Article  ADS  Google Scholar 

  • Carré, P., Metherell, A.J.F., Quinn, T.J.: Apropos of: “The gravitational field of a 111 tetrahedron”. Metrologia 23, 119–120 (1987)

    Article  ADS  Google Scholar 

  • Chai, Y., Hinze, W.J.: Gravity inversion of an interface above which the density contrast varies exponentially with depth. Geophysics 53, 837–845 (1998)

    Article  ADS  Google Scholar 

  • Collette, B.I.: Chart for determining the gravity effect of two and three dimensional bodies bounded by arbitrary polygons. Geophys. Prospect. 13, 12–21 (1965)

    Article  ADS  Google Scholar 

  • Conway, J.T.: Geometric efficiency for a circular detector and a linear source of arbitrary orientation and position. Nucl. Instr. Meth. A 622, 555–566 (2010)

    Article  ADS  Google Scholar 

  • Conway, J.T.: Geometric efficiency for a circular detector and a ring source of arbitrary orientation and position. Nucl. Instr. Meth. A 640, 99–109 (2011)

    Article  ADS  Google Scholar 

  • D’Urso, M.G., Russo, P.: A new algorithm for point-in-polygon test. Surv. Rev. 36, 410–422 (2002)

    Article  Google Scholar 

  • D’Urso, M.G.: On the evaluation of the gravity effects of polyhedral bodies and a consistent treatment of related singularities. J. Geod. 87, 239–252 (2013)

    Article  ADS  Google Scholar 

  • D’Urso, M.G.: Analytical computation of gravity effects for polyhedral bodies. J. Geod. 88, 13–29 (2014a)

    Article  ADS  Google Scholar 

  • D’Urso, M.G.: Gravity effects of polyhedral bodies with linearly varying density. Celest. Mech. Dyn. Astron. 120, 349–372 (2014b) doi:10.1007/s10569-014-9578-z

  • Gallardo-Delgado, L.A., Perez-Flores, L.A., Gomez-Trevino, E.: A versatile algorithm for joint inversion of gravity and magnetic data. Geophysics 68, 949–959 (2003)

    Article  ADS  Google Scholar 

  • Garcia-Abdeslem, J.: Gravitational attraction of a rectangular prism with depth dependent density. Geophysics 57, 470–473 (1992)

    Article  ADS  Google Scholar 

  • Garcia-Abdeslem, J.: Gravitational attraction of a rectangular prism with density varying with depth following a cubic polynomial. Geophysics 70, J39–J42 (2005)

    Article  ADS  Google Scholar 

  • Hamayun, P., Prutkin, I., Tenzer, R.: The optimum expression for the gravitational potential of polyhedral bodies having a linearly varying density distribution. J. Geod. 83, 1163–1170 (2009)

    Article  ADS  Google Scholar 

  • Holstein, H., Ketteridge, B.: Gravimetric analysis of uniform polyhedra. Geophysics 61, 357–364 (1996)

    Article  ADS  Google Scholar 

  • Holstein, H., Schurholz, P., Starr, A.J., Chakroborty, M.: Comparison of gravimetric formulas for uniform polyhedra. Geophysics 64, 1434–1446 (1999)

    Article  ADS  Google Scholar 

  • Holstein, H.: Gravimetric similarity in anomaly formulas for uniform polyhedra. Geophysics 67, 1126–1133 (2002)

    Article  ADS  Google Scholar 

  • Holstein, H.: Gravimetric similarity in anomaly formulas for polyhedra of spatially linear media. Geophysics 68, 157–167 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  • Hormann, K., Agathos, A.: The point in polygon problem for arbitrary polygons. Comp. Geom. Theor. Appl. 20, 131–144 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  • Huang, C.W., Shih, T.Y.: On the complexity of point-in-polygon algorithms. Comput. Geosci. 23, 109–118 (1997)

    Article  ADS  Google Scholar 

  • Leland, K.O.: An algorithm for winding numbers for closed polygonal paths. Math. Comput. 29, 554–558 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  • Mader, K.: Die Bestimmung einer Geoiderhebung aus Messungen mit der Drehwaage von Eötvös. Pure Appl. Geophys. 13, 53–57 (1948)

    Article  Google Scholar 

  • Mader, K.: Das Newtonsche Raumpotential prismatischer K örper und seine Ableitungen bis zur dritten Ordnung. In: Sonderheft 11 der Osterreichische Zeitschrift fur Vermessungswesen (1951)

  • Nagy, D.: The gravitational attraction of a right rectangular prism. Geophysics 31, 362–371 (1966)

    Article  ADS  Google Scholar 

  • Nagy, D., Papp, G., Benedek, J.: The gravitational potential and its derivatives for the prism. J. Geod. 74, 552–560 (2000)

    Article  ADS  MATH  Google Scholar 

  • Newton, I.: Principia. Joseph Streater, London (1687)

  • Metherell, A.J.F., Quinn, T.J.: The gravitational field of a 111 tetrahedron. Metrologia 22, 87–91 (1986)

    Article  ADS  Google Scholar 

  • Okabe, M.: Analytical expressions for gravity anomalies due to homogeneous polyhedral bodies and translation into magnetic anomalies. Geophysics 44, 730–741 (1979)

    Article  ADS  Google Scholar 

  • Petrović, S.: Determination of the potential of homogeneous polyhedral bodies using line integrals. J. Geod. 71, 44–52 (1996)

    Article  ADS  MATH  Google Scholar 

  • Paul, M.K.: The gravity effect of a homogeneous polyhedron for three dimensional interpretation. Pure Appl. Geophys. 112, 553–561 (1974)

    Article  ADS  Google Scholar 

  • Pohanka, V.: Optimum expression for computation of the gravity field of a homogeneous polyhedral body. Geophys. Prospect. 36, 733–751 (1988a)

    Article  ADS  Google Scholar 

  • Pohanka, V.: Optimum expression for computation of the gravity field of a polyhedral body with linearly increasing density. Geophys. Prospect. 46, 391–404 (1998b)

    Article  ADS  Google Scholar 

  • Scheeres, D.J., Khushalani, R.I., Werner, R.A.: Estimating asteroid density distributions from shape and gravity information. Planet. Space Sci. 48, 965–971 (2000)

    Article  ADS  Google Scholar 

  • Singh, B., Guptasarma, D.: New method for fast computation of gravity and magnetic anomalies from arbitrary polyhedra. Geophysics 66, 521–526 (2001)

    Article  ADS  Google Scholar 

  • Spiegel, M.R.: Vector Analysis and an Introduction to Tensor Analysis. Schaum, New York (1959)

    Google Scholar 

  • Takahashi, Yu., Scheeres, D.J., Werner, R.A.: Surface gravity fields for asteroids and comets. J. Guid. Control Dynam. 36, 362–374 (2013)

  • Takin, M., Talwani, M.: Rapid computation of gravitational attraction of topography on a spherical Earth. Geophys. Prospect. 14, 119–142 (1966)

    Article  ADS  Google Scholar 

  • Talwani, M., Worzel, J.L., Landisman, M.: Rapid gravity computation for two-dimensional bodies with application to the Mendochino submarine fracture zone. J. Geophys. Res. 64, 49–59 (1959)

    Article  ADS  Google Scholar 

  • Talwani, M., Ewing, M.: Rapid computation of gravitational attraction of three dimensional bodies of arbitrary shape. Geophysics 25, 203–225 (1960)

    Article  ADS  Google Scholar 

  • Tsoulis, D., Petrovic, S.: On the singularities of the gravity field of a homogeneous polyhedral body. Geophysics 66, 535–539 (2001)

    Article  ADS  Google Scholar 

  • Tsoulis, D.: Analytical computation of the full gravity tensor of a homogeneous arbitrarily shaped polyhedral source using line integrals. Geophysics 77, F1–F11 (2012)

    Article  ADS  Google Scholar 

  • Waldvogel, J.: The Newtonian potential of homogeneous polyhedra. ZAMP 30, 388–398 (1979)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Werner, R.A.: The gravitational potential of a homogeneous polyhedron or don’t cut corners. Celest. Mech. Dyn. Astron. 59, 253–278 (1994)

    Article  ADS  MATH  Google Scholar 

  • Werner, R.A., Scheeres, D.J.: Exterior gravitation of a polyhedron derived and compared with harmonic and mascon gravitation representations of asteroid 4769 Castalia. Celest. Mech. Dyn. Astron. 65, 313–344 (1997)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John T. Conway.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Conway, J.T. Analytical solution from vector potentials for the gravitational field of a general polyhedron. Celest Mech Dyn Astr 121, 17–38 (2015). https://doi.org/10.1007/s10569-014-9588-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-014-9588-x

Keywords

Navigation