Skip to main content
Log in

A key-formula to compute the gravitational potential of inhomogeneous discs in cylindrical coordinates

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

We have established the exact expression for the gravitational potential of a homogeneous polar cell—an elementary pattern used in hydrodynamical simulations of gravitating discs. This formula, which is a closed-form, works for any opening angle and radial extension of the cell. It is valid at any point in space, i.e. in the plane of the distribution (inside and outside) as well as off-plane, thereby generalizing the results reported by Durand (Electrostatique. Vol. I. Les Distributions, 1953) for the circular disc. The three components of the gravitational acceleration are given. The mathematical demonstration proceeds from the incomplete version of Durand’s formula for the potential (based on complete elliptic integrals). We determine first the potential due to the circular sector (i.e. a pie-slice sheet), and then deduce that of the polar cell (from convenient radial scaling and subtraction). As a by-product, we generate an integral theorem stating that “the angular average of the potential of any circular sector along its tangent circle is \({\frac{2}{\pi}}\) times the value at the corner”. A few examples are presented. For numerical resolutions and cell shapes commonly used in disc simulations, we quantify the importance of curvature effects by performing a direct comparison between the potential of the polar cell and that of the Cartesian (i.e. rectangular) cell having the same mass. Edge values are found to deviate roughly like \({2 \times 10^{-3}\times N/256}\) in relative (N is the number of grid points in the radial direction), while the agreement is typically four orders of magnitude better for values at the cell’s center. We also produce a reliable approximation for the potential, valid in the cell’s plane, inside and close to the cell. Its remarkable accuracy, about \({5\times 10^{-4}\times N/256}\) in relative, is sufficient to estimate the cell’s self-acceleration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnaboldi M., Sparke L.S.: Self-gravitating polar rings in axisymmetric and triaxial galaxy potentials. Astron. J. 107, 958–970 (1994). doi:10.1086/116909

    Article  ADS  Google Scholar 

  • Baruteau, C., Masset, F.: Type I planetary migration in a self-gravitating disk. Astrophys. J. 678, 483–497 (2008) doi:10.1086/529487

    Google Scholar 

  • Binney J., Tremaine S.: Galactic dynamics, pp. 747. Princeton University Pres, Princeton, NJ (1987)

    MATH  Google Scholar 

  • Brada, R., Milgrom, M.: Finite disks with power-law potentials. Astrophys. J. 444, 71–79 (1995). doi:10.1086/175583

    Google Scholar 

  • Casertano S.: Rotation curve of the edge-on spiral galaxy NGC 5907: disc and halo masses. Mon. Not. R. Astr. Soc. 203, 735–747 (1983)

    ADS  Google Scholar 

  • Chappell, J.M., Chappell, M.J., Iqbal, A., Abbott, D.: The gravitational field of a cube. ArXiv e-prints (2012)

  • Conway J.T.: Analytical solutions for the newtonian gravitational field induced by matter within axisymmetric boundaries. Mon. Not. R. Astr. Soc. 316, 540–554 (2000). doi:10.1046/j.1365-8711.2000.03523.x

    Article  ADS  Google Scholar 

  • Dieckmann, A.: (private communication) (2011)

  • Durand, E.: Électrostatique. Vol. I. Les Distributions, Masson, Paris (1953)

  • Evans N.W., Collett J.L.: Simple discs with flat rotation curves. Mon. Not. R. Astr. Soc. 264, 353–374 (1993)

    ADS  Google Scholar 

  • Fukushima T.: Precise computation of acceleration due to uniform ring or disk. Celest. Mechan. Dynam. Astron. 108, 339–356 (2010). doi:10.1007/s10569-010-9304-4

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Gradshteyn I.S., Ryzhik I.M.: Table of Integrals, Series, and Products, Seventh Edition. Academic Press, (2007)

  • Huré, J.M., Pelat, D., Pierens, A.: Generation of potential/surface density pairs in flat disks. Power law distributions. Astron. Astrophys. 475, 401–407 (2007). doi:10.1051/0004-6361:20066808

  • Huré, J.M., Pierens, A., Hersant, F.: Self-gravity at the scale of the polar cell. Astron. Astrophys. 500, 617–620 (2009). doi:10.1051/0004-6361/200911806

    Google Scholar 

  • Kalnajs A.J.: Dynamics of flat galaxies. II. Biorthonormal surface density-potential pairs for finite disks. Astrophys. J. 205, 745–750 (1976). doi:10.1086/154330

    Article  MathSciNet  ADS  Google Scholar 

  • Lass H., Blitzer L.: The gravitational potential due to uniform disks and rings. Celest. Mechan. 30, 225–228 (1983). doi:10.1007/BF01232189

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Mestel, L.: On the galactic law of rotation. Mon. Not. R. Astr. Soc. 126, 553 (1963)

    Google Scholar 

  • Nelson, A.F.: Numerical requirements for simulations of self-gravitating and non-self-gravitating discs. Mon. Not. R. Astr. Soc. 373, 1039–1073 (2006). doi:10.1111/j.1365-2966.2006.11119.x

  • Pierens, A., Baruteau, C., Hersant, F.: On the dynamics of resonant super-Earths in disks with turbulence driven by stochastic forcing. Astron. Astrophys. 531, A5 (2011). doi:10.1051/0004-6361/201116611

  • Qian E.: Potential-density pairs for flat discs. Mon. Not. R. Astr. Soc. 257, 581–592 (1992)

    ADS  Google Scholar 

  • Quan, E.E.: Biorthogonal potential density sets for flat discs. Mon. Not. R. Astr. Soc. 263, 394 (1993)

    Google Scholar 

  • Schulz, E.: Potential-density pairs for a family of finite disks. Astrophys. J. 693, 1310–1315 (2009). doi:10.1088/0004-637X/693/2/1310

    Google Scholar 

  • Schulz, E.: The gravitational force and potential of the finite mestel disk. Astrophys. J. 747, 106 (2012). doi:10.1088/0004-637X/747/2/106

  • Šubr, L., Karas, V.: A manifestation of the Kozai mechanism in the galactic nuclei. In: Hledík, S., Stuchlík, Z. (eds.) RAGtime 6/7: Workshops on Black Holes and Neutron Stars, pp. 281–293 (2005)

  • Tresaco, E., Elipe, A., Riaguas, A.: Dynamics of a particle under the gravitational potential of a massive annulus: properties and equilibrium description. Celest. Mech. Dynam. Astron. 111, 431–447 (2011). doi:10.1007/s10569-011-9371-1

  • van de Vel, H.: On the series expansion method for computing incomplete elliptic integrals of the first and second kinds. Math. Comp. 23 (105), 6169 (1969). doi:10.1090/S0025-5718-1969-0239732-8

    Google Scholar 

  • Vogt, D., Letelier, P.S.: Analytical potential-density pairs for flat rings and toroidal structures. Mon. Not. R. Astr. Soc. 396, 1487–1498 (2009) doi:10.1111/j.1365-2966.2009.14803.x

  • Zhu, P.: Field distribution of a uniformly charged circular arc. J. Electrostat. 63(11), 1035–1047 (2005). doi:10.1016/j.elstat.2005.02.001, URL http://www.sciencedirect.com/science/article/pii/S0304388605000148

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Marc Huré.

Electronic Supplementary Material

The Below is the Electronic Supplementary Material.

ESM 1 (PDF 82 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huré, JM. A key-formula to compute the gravitational potential of inhomogeneous discs in cylindrical coordinates. Celest Mech Dyn Astr 114, 365–385 (2012). https://doi.org/10.1007/s10569-012-9445-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-012-9445-8

Keywords

Navigation