Skip to main content
Log in

Evidence-based robust design of deflection actions for near Earth objects

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

This paper presents a novel approach to the robust design of deflection actions for near Earth objects (NEO). In particular, the case of deflection by means of solar-pumped laser ablation is studied here in detail. The basic idea behind laser ablation is that of inducing a sublimation of the NEO surface, which produces a low thrust thereby slowly deviating the asteroid from its initial Earth threatening trajectory. This work investigates the integrated design of the space-based laser system and the deflection action generated by laser ablation under uncertainty. The integrated design is formulated as a multi-objective optimisation problem in which the deviation is maximised and the total system mass is minimised. Both the model for the estimation of the thrust produced by surface laser ablation and the spacecraft system model are assumed to be affected by epistemic uncertainties (partial or complete lack of knowledge). Evidence Theory is used to quantify these uncertainties and introduce them in the optimisation process. The propagation of the trajectory of the NEO under the laser-ablation action is performed with a novel approach based on an approximated analytical solution of Gauss’ variational equations. An example of design of the deflection of asteroid Apophis with a swarm of spacecraft is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Battin, R.H.: An introduction to the mathematics and methods of astrodynamics. AIAA Education Series, American Institute for Aeronautics and Astronautics Inc., New York (1999)

  • Britt D.T., Yeomans D., Housen K., Consolmagno G.: Asteroid density, porosity, and structure. Asteroids III 1, 485–500 (2002)

    ADS  Google Scholar 

  • Campbell J.W., Phipps C., Smalley L., Reilly J., Boccio D.: The impact imperative: laser ablation for deflecting asteroids, meteoroids, and comets from impacting the Earth. AIP Conf. Proc. 664, 509–522 (2003)

    Article  ADS  Google Scholar 

  • Colombo c., Vasile M., Radice G.: Optimal low-thrust trajectories to asteroids through an algorithm based on differential dynamic programming. Celest. Mech. Dyn. Astron. 105, 75–112 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Colombo C., Vasile M., Radice G.: Semi-analytical solution for the optimal low-thrust deflection of near-Earth objects. J. Guid. Control Dyn. 32(3), 796–809 (2009b)

    Article  Google Scholar 

  • Gibbings, A., Vasile, M., Hopkins, J.M., Burns, D., Watson, I.: Exploring and Exploiting Asteroids with Laser Ablation, UK Space Conference, Warwick, UK, 4–5th July (2011a)

  • Gibbings, A., Vasile, M., Hopkins, J.M., Burns, D.: On testing Laser ablation processes for asteroid deflection. In: 2011 IAA Planetary Defence Conference, Bucharest, Romania, 9–12th May (2011b)

  • Glassmeier K.H., Boehnhardt H., Koschny D., Kührt E., Richter I.: The rosetta mission: flying towards the origin of the solar system. Space Sci. Rev. 128(1–4), 1–21 (2007)

    Article  ADS  Google Scholar 

  • Hampton D., Baer J., Huisjen M., Varner C., Delamere A., Wellnitz D., A’Hearn M., Klaasen K.: An overview of the instrument suite for the deep impact mission. Space Sci. Rev. 117(1–2), 43–93 (2005)

    Article  ADS  Google Scholar 

  • Jet Propulsion Laboratory, Near Earth Object Program. http://neo.jpl.nasa.gov/neo/groups.html (2012). Accessed 7 Apr 2012

  • Kahle R., Kuhrt E., Hahn G., Knollenberg J.: Physical limits of solar collectors in deflecting Earth-threatening asteroids. Aerosp. Sci. Technol. 10(3), 256–263 (2006)

    Article  Google Scholar 

  • Klir G.J., Smith R.M.: On measuring uncertainty and uncertainty-based information: recent developments. Ann. Math. Artif. Intell. 32(1–4), 5–33 (2001)

    Article  MathSciNet  Google Scholar 

  • Lu, E.T., Love, S.G.: Gravitational tractor for towing asteroids. Nature 438(7065), 177–178 (2005)

    Google Scholar 

  • Maddock C.A., Vasile M.: Design of optimal spacecraft-asteroids formation through a hybrid global optimization approach. Int. J. Intell. Comput. Cyber. 1(2), 239–268 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • McAdams, J.V., Dunham, D.W., Mosher, L.E., Ray, J.C., Antreasian, P.G., Helfrich, C.E., et al.: Maneuver history for the NEAR mission—launch through Eros orbit insertion. In: Proceedings of the AIAA/AAS Astrodynamics Specialist Conference, AIAA-2000-4141 (2000)

  • McInnes C.: Deflection of near-Earth asteroids by kinetic energy impacts from retrograde orbits. Planet. Space Sci. 52(7), 587–590 (2004)

    Article  ADS  Google Scholar 

  • Melosh H.J., Nemchinov I.V., Zetzer I.I.: Non-nuclear Strategies for Deflecting Comets and Asteroids, Hazards Due to Comets and Asteroids. University of Arizona, Tucson (1994)

    Google Scholar 

  • Nakamura, A.M., Michel, P.: Asteroids and their collisional disruption. In: Lecture Notes in Physics, Small Bodies in Planetary Systems, pp. 1–27. Springer, Berlin (2009)

  • Oberkampf, W., Helton, J.: Investigation of Evidence Theory in Engineering Applications. AIAA-Paper 2002-1569 (2002)

  • Olds, J., Charania, A., Schaffer, M.G.: Multiple Mass Drivers as an Option for Asteroid Deflection Missions, 2007 Planetary Defense Conference, Washington, DC, Paper 2007 S3-7 (2007)

  • Palmas, A.: Approximations of Low-Thrust Trajectory Arcs by Means of Perturbative Approaches, M.D. Thesis, Politecnico di Torino (2010)

  • Park S.Y., Mazanek D.D.: Deflection of earth-crossing asteroids/comets using rendezvous spacecraft and laser ablation. J. Astronaut. Sci. 53(1), 21–37 (2005)

    Google Scholar 

  • Phipps, C.: Laser Deflection of NEO’s, Report of the NASA Near-Earth-Object Interception Workshop (1992)

  • Phipps, C.: Laser deflection of near Earth asteroids and comet nuclei. In: Proceedings of the International Conference on Lasers 96 (1997)

  • Phipps C.: Can lasers play a rôle in planetary defense?. AIP Conf. Proc. 1278, 502–508 (2010)

    Article  ADS  Google Scholar 

  • Phipps C., Bohn W., Eckel H.A., Horisawa H., Lippert T., Michaelis M. et al.: Review: laser-ablation propulsion. J. Propuls. Power 26(4), 609–637 (2010)

    Article  Google Scholar 

  • Pieters C.M., McFadden L.A.: Meteorite and asteroid reflectance spectroscopy: clues to early solar system processes. Ann. Rev. Earth Planet. Sci. 22, 457–497 (1994)

    Article  ADS  Google Scholar 

  • Price, S.D.: The surface properties of asteroids. Adv. Space Res. 33(9), 1548–1557 (2004); Elsevier

    Google Scholar 

  • Project Icarus, MIT Press, Cambridge, MA (1968)

  • Rayman M., Varghese P., Lehman D., Livesay L.: Results from the deep space 1 technology validation mission. Acta Astronaut. 47(2), 475–487 (2000)

    Article  ADS  Google Scholar 

  • Russell C.T., Capaccioni F., Coradini A., De Sanctis M.C., Feldman W.C., Jaumann R., Keller H.U., McCord T.B., McFadden L.A., Mottola S., Pieters C.M., Prettyman T.H., Raymond C.A., Sykes M.V., Smith D.E., Zuber M.T.: Dawn mission to Vesta and Ceres. Earth Moon Planets 101(1–2), 65–91 (2007)

    Article  ADS  Google Scholar 

  • Sanchez J.P., Colombo C., Vasile M., Radice G.: Multicriteria comparison among several mitigation strategies for dangerous near-Earth objects. J. Guid. Control Dyn. 32(1), 121–142 (2009)

    Article  Google Scholar 

  • Scheeres, D.J., Schweickart, R.L.: The Mechanics of Moving Asteroids, AIAA planetary Defense Conference, Orange County, CA, AIAA Paper 2004-1447 (2004)

  • Smith, P.L., Barrera, M.J., et al.: Deflecting a Near Earth Object with Today’s Space Technology, AIAA planetary Defense Conference, Orange County, CA, AIAA Paper 2004-1447 (2004)

  • Spitale J.N.: Asteroid hazard mitigation using the Yarkovsky effect. Science 296(5565), 77 (2002)

    Article  Google Scholar 

  • Vasile, M., Colombo, C.: Optimal impact strategies for asteroid deflection. J. Guid. Control Dyn. 31(4), 858–872 (2008)

    Google Scholar 

  • Vasile M., Croisard N.: Robust Preliminary Space Mission Design Under Uncertainty, Computational Intelligence in Expensive Optimization Problems, pp. 543–570. Springer, Berlin (2010)

    Google Scholar 

  • Vasile M., Maddock C.A.: On the deflection of asteroids with mirrors. Celest. Mech. Dyn. Astron. 107(1), 265–284 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Vasile M., Zuiani F.: Multi-agent collaborative search: an agent-based memetic multi-objective optimization algorithm applied to space trajectory design. Proc. Inst. Mech. Eng. Part G: J. Aerosp. Eng. 225(11), 1211–1227 (2011)

    Article  Google Scholar 

  • Vasile, M., Maddock, C., Radice, G.: Mirror formation control in the vicinity of an asteroid. In: AIAA/AAS Astrodynamics Specialist Conference and Exhibit, 18–21 August 2008, Honolulu, Hawaii (2008)

  • Vasile, M., Maddock, C.A., Summerer, L.: Conceptual design of a multi-mirror system for asteroid deflection. 27th International Symposium on Technology and Science, Tsukuba City (2009a)

  • Vasile M., Maddock C., Radice G., McInnes C.: NEO Deflection though a Multi-Mirror System, ESA Call for Proposals: Encounter 2029, Final Report for Ariadna Study Contract 08/4301, Technical officer: Summerer L. (2009b)

  • Vasile M., Minisci E., Locatelli M.: An inflationary differential evolution algorithm for space trajectory optimization. IEEE Trans. Evol. Comput. 15(2), 267–281 (2011a)

    Article  Google Scholar 

  • Vasile, M., Minisci, E., Zuiani, F., Komninou, E., Wijnands, Q.: Fast Evidence-based Systems Engineering, Paper IAC-11.D1.3.3, 62nd International Astronautical Congress, Cape Town, South Africa, 3rd–7th October (2011b)

  • Wertz, J.R., Larson, W.J.: Space mission analysis and design. Microcosm. Microcosm Press, California (1999)

  • Zuiani F., Vasile M., Palmas A., Avanzini G.: Direct transcription Of low-thrust trajectories with finite trajectory elements. Acta Astronaut. 72, 108–120 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Zuiani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zuiani, F., Vasile, M. & Gibbings, A. Evidence-based robust design of deflection actions for near Earth objects. Celest Mech Dyn Astr 114, 107–136 (2012). https://doi.org/10.1007/s10569-012-9423-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-012-9423-1

Keywords

Navigation