Skip to main content
Log in

Motion of dust in mean motion resonances with planets

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

Effect of stellar electromagnetic radiation on the motion of spherical dust particle in mean motion orbital resonances with a planet is investigated. Planar circular restricted three-body problem with the Poynting–Robertson (P–R) effect yields monotonic secular evolution of eccentricity when the particle is trapped in the resonance. Planar elliptic restricted three-body problem with the P–R effect enables nonmonotonous secular evolution of eccentricity and the evolution of eccentricity is qualitatively consistent with the published results for the complicated case of interaction of electromagnetic radiation with nonspherical dust grain. Thus, it is sufficient to allow either nonzero eccentricity of the planet or nonsphericity of the grain and the orbital evolutions in the resonances are qualitatively equal for the two cases. This holds both for exterior and interior mean motion orbital resonances. Evolutions of argument of perihelion in the planar circular and elliptical restricted three-body problems are shown. Numerical integrations show that an analytic expression for the secular time derivative of the particle’s argument of perihelion does not exist, if only dependence on semimajor axis, eccentricity and argument of perihelion is admitted. Connection between the shift of perihelion and oscillations in secular eccentricity is presented for the planar elliptic restricted three-body problem with the P–R effect. Period of the oscillations corresponds to the period of one revolution of perihelion. Change of optical properties of the spherical grain with the heliocentric distance is also considered. The change of the optical properties: (i) does not have any significant influence on the secular evolution of eccentricity, (ii) causes that the shift of perihelion is mainly in the same direction/orientation as the particle motion around the Sun. The statements hold both for circular and noncircular planetary orbits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beaugé C., Ferraz-Mello S.: Capture in exterior mean-motion resonances due to Poynting–Robertson drag. Icarus 110, 239–260 (1994)

    Article  ADS  Google Scholar 

  • Brouwer D., Clemence G.M.: Methods of Celestial Mechanics. Academic Press, New York (1961)

    Google Scholar 

  • Brownlee D.E.: The ring around us. Nature 369, 706 (1994)

    Article  ADS  Google Scholar 

  • Chörny G.F.: Quasiintegrals of the photogravitational eccentric restricted three-body problem with Poynting–Robertson drag. Celest. Mech. Dynam. Astron. 97, 229–248 (2007)

    Article  MATH  ADS  Google Scholar 

  • Dermott S.F., Jayaraman S., Xu Y.L., Gustafson B.A.S., Liou J.C.: A circumsolar ring of asteroidal dust in resonant lock with the Earth. Nature 369, 719–723 (1994)

    Article  ADS  Google Scholar 

  • Gonczi, R., Froeschle, Ch., Froeschle, Cl.: Evolution of three dimensional resonant orbits in presence of Poynting–Robertson drag. In: Lagerkvist, C.L., Rickman, H. (eds.) Asteroids, Comets, Meteors, pp. 137–143. Proc. Uppsala Univ. (1983)

  • Jackson A.A., Zook H.A.: A Solar System dust ring with the Earth as its shepherd. Nature 337, 629–631 (1989)

    Article  ADS  Google Scholar 

  • Klačka J.: Electromagnetic radiation and motion of a particle. Celest. Mech. Dynam. Astron. 89, 1–61 (2004)

    Article  MATH  ADS  Google Scholar 

  • Klačka, J.: Mie, Einstein and the Poynting–Robertson effect. arXiv: astro-ph/0807.2795 (2008a)

  • Klačka, J.: Electromagnetic radiation, motion of a particle and energy–mass relation. arXiv: astro-ph/0807.2915 (2008b)

  • Klačka J., Kocifaj M.: Temporary capture of dust grains in exterior resonances with Earth. In: Gustafson, B.A.S, Kolokolova, L., Videen, G.(eds) Sixth Conference on Light Scattering by Nonspherical Particles. Contributions to Electromagnetic and Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications & Workshop on Polarization in Astronomy, pp. 167–169. Army Research Laboratory, Adelphi, Maryland (2002)

    Google Scholar 

  • Klačka J., Kocifaj M.: Effect of electromagnetic radiation on dynamics of cosmic dust particles. In: Nick, S., Nick, S.(eds) Space Science: New Research, pp. 245–285. Nova Science Publishers, Inc., New York (2006a)

    Google Scholar 

  • Klačka J., Kocifaj M.: Effect of radiation on dust particles in orbital resonances. J. Quant. Spectrosc. Radiat. Transf. 100, 187–198 (2006b)

    Article  ADS  Google Scholar 

  • Klačka J., Kocifaj M., Pástor P.: Motion of dust near exterior resonances with planets. J. Phys.: Conf. Ser. 6, 126–131 (2005a)

    Article  ADS  Google Scholar 

  • Klačka, J., Kocifaj, M., Pástor, P.: Effect of radiation on nonspherical particles in resonances with large planets. In: Moreno, F., López-Moreno, J.J., Munoz, O., Molina, A. (eds.) 8th Conference on Electromagnetic and Light Scattering by Nonspherical Particles: Theory, Measurements and Applications, pp. 156–159. Instituto de Astrofisica de Granada (2005b)

  • Klačka J., Kocifaj M., Pástor P., Petržala J.: Poynting–Robertson effect and perihelion motion. Astron. Astrophys. 464, 127–134 (2007)

    Article  MATH  ADS  Google Scholar 

  • Kocifaj M., Klačka J., Horvath H.: Temperature-influenced dynamics of small dust particles. Mon. Not. R. Astron. Soc. 370, 1876–1884 (2006)

    ADS  Google Scholar 

  • Liou J.-Ch., Zook H.A.: An asteroidal dust ring of micron-sized particles trapped in the 1:1 mean motion resonance with Jupiter. Icarus 113, 403–414 (1995)

    Article  ADS  Google Scholar 

  • Liou J.-Ch., Zook H.A.: Evolution of interplanetary dust particles in mean motion resonances with planets. Icarus 128, 354–367 (1997)

    Article  ADS  Google Scholar 

  • Liou J.-Ch., Zook H.A., Jackson A.A.: Radiation pressure, Poynting–Robertson drag, and solar wind drag in the restricted three-body problem. Icarus 116, 186–201 (1995)

    Article  ADS  Google Scholar 

  • Marzari F., Vanzani V.: Dynamical evolution of interplanetary dust particles. Astron. Astrophys 283, 275–286 (1994)

    ADS  Google Scholar 

  • Murray C.D., Dermott S.F.: Solar System Dynamics. Cambridge University Press, New York (1999)

    MATH  Google Scholar 

  • Reach W.T., Franz B.A., Welland J.L., Hauser M.G., Kelsall T.N., Wright E.L., Rawley G., Stemwedel S.W., Splesman W.J.: Observational confirmation of a circumsolar dust ring by the COBE satellite. Nature 374, 521–523 (1995)

    Article  ADS  Google Scholar 

  • Robertson H.P.: Dynamical effects of radiation in the Solar System. Mon. Not. R. Astron. Soc. 97, 423–438 (1937)

    MATH  ADS  Google Scholar 

  • Šidlichovský M., Nesvorný D.: Temporary capture of grains in exterior resonances with Earth: planar circular restricted three-body problem with Poynting–Robertson drag. Astron. Astrophys. 289, 972–982 (1994)

    ADS  Google Scholar 

  • Wyatt S.P., Whipple F.L.: The Poynting–Robertson effect on meteor orbits. Astrophys. J. 111, 134–141 (1950)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavol Pástor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pástor, P., Klačka, J. & Kómar, L. Motion of dust in mean motion resonances with planets. Celest Mech Dyn Astr 103, 343–364 (2009). https://doi.org/10.1007/s10569-009-9202-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-009-9202-9

Keywords

Navigation