Skip to main content
Log in

Binary collisions and the slingshot effect

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

We derive the equations for the gravity assist manoeuvre in the general 2D case without the constraints of circular planetary orbits or widely different masses as assumed by Broucke (AIAA/AAS 1988) and obtain the slingshot conditions and maximum energy gain for arbitrary mass ratios of two colliding rigid bodies. Using the geometric view developed in an earlier paper by the authors (Rica da Silva, A., Lemos, J.P.S.: Am. J. Phys. 74, 584–590, 2006) the possible trajectories are computed for both attractive or repulsive interactions yielding a further insight on the slingshot mechanics and its parametrization. http://centra.ist.utl.pt/amaro/Collisions/Collisions.html. The general slingshot manoeuvre for arbitrary masses is explained as a particular case of the possible outcomes of attractive or repulsive binary collisions, and the correlation between asymptotic information and orbital parameters is obtained in general.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armellin R., Lavagna M. and Ercoli-Finzi A.  (2006). Aero-gravity assist maneuvers: controlled dynamics modeling and optimization. Celest. Mech. Dyn. Astron. 95: 391–405

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Asada H.  (2007). An exact solution to determination of an open orbit. Celest. Mech. Dyn. Astron. 97: 151–164

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Barger, V., Olsson, M.: Classical Mechanics: A Modern Perspective. McGraw-Hill (1995)

  • Barrabés, E., Gómez, G., Rodríguez-Canabal, J.: Advanced topics in astrodynamics. http://www.ieec.fcr.es/astro04/notes/gravity.pdf. Barcelona, July 2004

  • Broucke, R.A.: The Celestial Mechanics of gravity assist. In: American Institute of Aeronautics and Astronautics, editor, AIAA/AAS Astrodynamics Conference, Minneapolis, MN, Aug. 15–17, 1988, number (A88-50352 21-13) in Technical Papers, pp. 69–78, August 1988

  • Dykla J.J., Cacioppo R. and Gangopadhyaya A. (2004). Gravitational slingshot. Am. J. Phys. 72(5): 619–621

    Article  ADS  Google Scholar 

  • Epstein K.J. (2005). Shortcut to the slingshot effect. Am. J. Phys. 73: 362

    Article  ADS  Google Scholar 

  • Johnson, R.C.:The slingshot effect. http://maths.dur.ac.uk/dma0rcj/Psling/sling.pdf. (2003)

  • Johnson W.R. and Longuski J.M. (2002). Design of aerogravity-assist trajectories. J. Spacecr. Rockets 39(1): 23–30

    Article  ADS  Google Scholar 

  • Labunsky, A.V., Papkov, O.V., Sukhanov, K.G.: Multiple Gravity Assist Interplanetary Trajectories, vol. 2 of Earth Space Institute Book Series on Public and Private Sector Interest in Space. TF-CRC (1988). ISBN 90-5699090-X

  • Longuski J.M. and Williams S.N. (1991). Automated design of gravity-assist trajectories to mars and the outer planets. Celest. Mech. Dyn. Astron. 52: 207–220

    Article  ADS  Google Scholar 

  • Longuski, J.M., Fischbach, E., Scheeres D.J.: Deflection of spacecraft trajectories as a new test of general relativity. Phys. Rev. Lett. 86(14), (2001)

  • Malyshev V.V., Usachov V.E. and Tychinskii Y.D. (2003). Solar probe mission with multiple gravity-assist maneuvers realized with conversion launchers. Cosmic Res. 41(5): 431–442

    Article  ADS  Google Scholar 

  • Miller, J.K., Weeks, C.J.: Application of Tisserand’s criterion to the design of gravity assist trajectories. In: AIAA/AAS Astrodynamics Specialist Conference and Exhibit, AIAA 2002-4717, August 2002

  • Ocampo C.A. (2003). Transfers to earth centered orbits via lunar gravity assist. Acta. Astron. 52: 173–179

    Article  Google Scholar 

  • Racca G.D. (2003). New challenges to trajectory design by the use of electric propulsion and other new means of wandering in the solar system. Celes. Mech. Dyn. Astron. 85: 1–24

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Rica da Silva, A.: 2D elastic collision parametrization (An Interactive Java Applet). http://centra.ist.utl.pt/amaro/Collisions/Collisions.html (2005)

  • Rica da Silva A. and Lemos J.P.S. (2006). Geometric parametrization of binary elastic collisions. Am. J. Phys. 74(7): 584–590

    Article  ADS  Google Scholar 

  • Roy, A.E.: Orbital Motion. Institute of Physics Publ. (2005)

  • Saslaw W.C., Valtonen M.J. and Aarseth S.J. (1974). The gravitational slingshot and the structure of extragalactic radio sources. Astrophys. J. 190: 253–270

    Article  ADS  Google Scholar 

  • Van Allen J.A. (2003). Gravitational assist in Celestial Mechanics-a tutorial. Am. J. Phys. 71(5): 448–451

    Article  ADS  Google Scholar 

  • Wiesel, W.E.: Spaceflight Dynamics. McGraw-Hill (1997)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amaro J. Rica da Silva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rica da Silva, A.J., Lemos, J.P.S. Binary collisions and the slingshot effect. Celestial Mech Dyn Astr 100, 191–208 (2008). https://doi.org/10.1007/s10569-007-9114-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-007-9114-5

Keywords

Navigation