Skip to main content
Log in

A resonant-term-based model including a nascent disk, precession, and oblateness: application to GJ 876

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

Investigations of two resonant planets orbiting a star or two resonant satellites orbiting a planet often rely on a few resonant and secular terms in order to obtain a representative quantitative description of the system’s dynamical evolution. We present a semianalytic model which traces the orbital evolution of any two resonant bodies in a first- through fourth-order eccentricity or inclination-based resonance dominated by the resonant and secular arguments of the user’s choosing. By considering the variation of libration width with different orbital parameters, we identify regions of phase space which give rise to different resonant “depths,” and propose methods to model libration profiles. We apply the model to the GJ 876 extrasolar planetary system, quantify the relative importance of the relevant resonant and secular contributions, and thereby assess the goodness of the common approximation of representing the system by just the presumably dominant terms. We highlight the danger in using “order” as the metric for accuracy in the orbital solution by revealing the unnatural libration centers produced by the second-order, but not first-order, solution, and by demonstrating that the true orbital solution lies somewhere “in-between” the third- and fourth-order solutions. We also present formulas used to incorporate perturbations from central-body oblateness and precession, and a protoplanetary or protosatellite thin disk with gaps, into a resonant system. We quantify the contributions of these perturbations into the GJ 876 system, and thereby highlight the conditions which must exist for multi-planet exosystems to be significantly influenced by such factors. We find that massive enough disks may convert resonant libration into circulation; such disk-induced signatures may provide constraints for future studies of exoplanet systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ballabh G.M. (1973). Potential energy of gravitationally interacting disk galaxies. Astrophys. Space Sci. 24: 535–561

    ADS  Google Scholar 

  • Beaugé C. (1994). Asymmetric librations in exterior resonances. Celest. Mech. Dyn. Astron. 60: 225–248

    MATH  ADS  Google Scholar 

  • Beaugé C. and Michtchenko T.A. (2003). Modelling the high-eccentricity planetary three-body problem. Application to the GJ876 planetary system. MNRAS 341: 760–770

    ADS  Google Scholar 

  • Beaugé C., Michtchenko T.A. and Ferraz-Mello S. (2006). Planetary migration and extrasolar planets in the 2/1 mean-motion resonance. MNRAS 365: 1160–1170

    ADS  Google Scholar 

  • Biasco L. and Chierchia L. (2002). Effective Hamiltonian for the D’Alembert planetary model near a spin/orbit resonance. Celest. Mech. Dyn. Astron. 83: 223–237

    MATH  ADS  MathSciNet  Google Scholar 

  • Bills B.G. (1999). Obliquity-oblateness feedback on Mars. J. Geophys. Res. 104: 30773–30797

    ADS  Google Scholar 

  • Blitzer L. (1984). Precession dynamics in spin-orbit coupling—a unified theory. Celest. Mech. 32: 355–364

    MATH  ADS  Google Scholar 

  • Borderies-Rappaport N. and Longaretti P.-Y. (1994). Test particle motion around an oblate planet. Icarus 107: 129–141

    ADS  Google Scholar 

  • Bouquillon S. and Souchay J. (1999). Precise modeling of the precession-nutation of Mars. Astron. Astrophys. 345: 282–297

    ADS  Google Scholar 

  • Brouwer D. (1946). The motion of a particle with negligible mass under the gravitational attraction of a spheroid. Astron. J. 51: 223–231

    ADS  MathSciNet  Google Scholar 

  • Brouwer D. (1959). Solution of the problem of artificial satellite theory without drag. Astron. J. 64: 378–397

    ADS  MathSciNet  Google Scholar 

  • Brouwer D. and Clemence G.M. (1961). Methods of Celestial Mechanics. Academic Press, New York

    Google Scholar 

  • Brumberg V.A., Evdokimova L.S. and Kochina N.G. (1970). Analytical methods for the orbits of artificial satellites of the moon. Celest. Mech. 3: 197–221

    ADS  Google Scholar 

  • Bryden G., Różyczka M., Lin D.N.C. and Bodenheimer P. (2000). On the interaction between protoplanets and protostellar disks. Astrophys. J. 540: 1091–1101

    ADS  Google Scholar 

  • Burns J.A., Schaffer L.E., Greenberg R.J. and Showalter M.R. (1985). Lorentz resonances and the structure of the Jovian ring. Nature 316: 115–119

    ADS  Google Scholar 

  • Burns, J.A., Simonelli, D.P., Showalter, M.R., Hamilton, D.P., Porco, C.D., Throop, H., Esposito, L.W.: Jupiter’s ring-moon system, pp. 241–262. Jupiter. The Planet, Satellites and Magnetosphere (2004)

  • Cameron A.G.W. and Pine M.R. (1973). Numerical models of the primitive solar nebula. Icarus 18: 377–406

    ADS  Google Scholar 

  • Celletti A. (1993). Stability of the synchronous spin-orbit resonance by construction of librational trapping tori. Celest. Mech. Dyn. Astron. 57: 325–328

    MATH  ADS  Google Scholar 

  • Chabrier G. and Baraffe I. (1997). Structure and evolution of low-mass stars. Astron. Astrophys. 327: 1039–1053

    ADS  Google Scholar 

  • Chang D. and Marsden J.E. (2003). Geometric derivation of the delaunay variables and geometric phases. Celest. Mech. Dyn. Astron. 86: 185–208

    MATH  ADS  MathSciNet  Google Scholar 

  • Christou A.A. and Murray C.D. (1997). A second order Laplace-Lagrange theory applied to the uranian satellite system. Astron. Astrophys. 327: 416–427

    ADS  Google Scholar 

  • Delfosse X., Forveille T., Mayor M., Perrier C., Naef D. and Queloz D. (1998). The closest extrasolar planet. A giant planet around the M4 dwarf GL 876. Astron. Astrophys. 338: L67–L70

    ADS  Google Scholar 

  • Efroimsky M. (2005a). Gauge freedom in orbital mechanics. New York Acad. Sci. Ann. 1065: 346–374

    ADS  MATH  Google Scholar 

  • Efroimsky M. (2005b). Long-term evolution of orbits about a precessing oblate planet: 1. The case of uniform precession. Celest. Mech. Dyn. Astron. 91: 75–108

    MATH  ADS  MathSciNet  Google Scholar 

  • Efroimsky M. (2006). Long-term evolution of orbits about a precessing oblate planet. 2. The case of variable precession. Celest Mech. Dyn. Astron. 96: 259–288

    MATH  ADS  MathSciNet  Google Scholar 

  • Efroimsky, M., Goldreich, P.: Gauge symmetry of the N-body problem in the Hamilton-Jacobi approach. J. Math. Phys. pp. 5958–5977 (2003)

  • Efroimsky M. and Goldreich P. (2004). Gauge freedom in the N-body problem of celestial mechanics. Astron. Astrophys. 415: 1187–1199

    ADS  MATH  Google Scholar 

  • Elliot, J.L., Nicholson, P.D.: The rings of Uranus. In: Greenberg, R., Brahic, A. (eds.) IAU Colloq. 75: Planetary Rings, pp. 25–72 (1984)

  • Elliot J.L., French R.G., Frogel J.A., Elias J.H., Mink D.J. and Liller W. (1981). Orbits of nine Uranian rings. Astron. J. 86: 444–455

    ADS  Google Scholar 

  • Ellis K.M. and Murray C.D. (2000). The disturbing function in solar system dynamics. Icarus 147: 129–144

    ADS  Google Scholar 

  • Ferraz-Mello S. (1988). The high-eccentricity libration of the Hildas. Astron. J. 96: 400–408

    ADS  Google Scholar 

  • Ferraz-Mello S. (1994). The convergence domain of the Laplacian expansion of the disturbing function. Celest. Mech. Dyn. Astron. 58: 37–52

    ADS  MathSciNet  Google Scholar 

  • Ferraz-Mello S., Beaugé C. and Michtchenko T.A. (2003). Evolution of migrating planet pairs in resonance. Celest. Mech. Dyn. Astron. 87: 99–112

    ADS  Google Scholar 

  • Ferrer S. and Osacar C. (1994). Harrington’s Hamiltonian in the stellar problem of three bodies: reductions, relative equilibria and bifurcations. Celest. Mech. Dyn. Astron. 58: 245–275

    MATH  ADS  MathSciNet  Google Scholar 

  • Fischer D.A., Marcy G.W., Butler R.P., Vogt S.S., Henry G.W., Pourbaix D., Walp B., Misch A.A. and Wright J.T. (2003). A planetary companion to HD 40979 and additional planets orbiting HD 12661 and HD 38529. Astrophys. J. 586: 1394–1408

    ADS  Google Scholar 

  • Flynn A.E. and Saha P. (2005). Second-order perturbation theory for spin-orbit resonances. Astron. J. 130: 295–307

    ADS  Google Scholar 

  • Ford E.B., Kozinsky B. and Rasio F.A. (2000). Secular evolution of hierarchical triple star systems. Astrophys. J. 535: 385–401

    ADS  Google Scholar 

  • Franklin F.A. and Soper P.R. (2003). Some effects of mean motion resonance passage on the relative migration of Jupiter and Saturn. Astron. J. 125: 2678–2691

    ADS  Google Scholar 

  • Godier S. and Rozelot J.-P. (2000). The solar oblateness and its relationship with the structure of the tachocline and of the Sun’s subsurface. Astron. Astrophys. 355: 365–374

    ADS  Google Scholar 

  • Goldreich P. (1965a). An explanation of the frequent occurrence of commensurable mean motions in the solar system. MNRAS 130: 159–181

    ADS  Google Scholar 

  • Goldreich P. (1965b). Inclination of satellite orbits about an oblate precessing planet. Astron. J. 70: 5–9

    ADS  Google Scholar 

  • Goldreich P. and Peale S. (1966). Spin-orbit coupling in the solar system. Astron. J. 71: 425–437

    ADS  Google Scholar 

  • Goździewski K. and Maciejewski A.J. (1998). Semi-analytical model of librations of a rigid moon orbiting an oblate planet. Astron. Astrophys. 339: 615–622

    ADS  Google Scholar 

  • Greenberg R. (1977). Orbit-orbit resonances in the solar system—varieties and similarities. Vistas Astron. 21: 209–239

    ADS  Google Scholar 

  • Greenberg R. (1981). Apsidal precession of orbits about an oblate planet. Astron. J. 86: 912–914

    ADS  Google Scholar 

  • Groten E., Molodenski S.M. and Zharkov V.N. (1996). On the theory of Mars’ forced nutation. Astron. J. 111: 1388–1399

    ADS  Google Scholar 

  • Gurfil, P., Lainey, V., Efroimsky, M.: Long-term evolution of orbits about a precessing oblate planet. 3. A semianalytical and a purely numerical approach. ArXiv:astro-ph/0607530v3. Celest Mech. Dyn. Astron. 99, (2007) In press

  • Hamilton D.P. (1994). A comparison of Lorentz, planetary gravitational and satellite gravitational resonances. Icarus 109: 221–240

    ADS  Google Scholar 

  • Hamilton D.P. and Burns J.B. (1993). Lorentz and gravitational resonances on circumplanetary particles. Adv. Space Res. 13: 241–248

    ADS  Google Scholar 

  • Harrington R.S. (1968). Dynamical evolution of triple stars. Astron. J. 73: 190–194

    ADS  Google Scholar 

  • Harrington R.S. (1969). The stellar three-body problem. Celest. Mech. 1: 200–209

    ADS  Google Scholar 

  • Hayashi C. (1981). Structure of the solar nebula, growth and decay of magnetic fields and effects of magnetic and turbulent viscosities on the nebula. Prog. Theor. Phys. Supp. 70: 35–53

    ADS  Google Scholar 

  • Hilton J.L. (1991). The motion of Mars’ pole. I – rigid body precession and nutation. Astron. J. 102: 1510–1527

    ADS  Google Scholar 

  • Iorio L. (2005). On the possibility of measuring the solar oblateness and some relativistic effects from planetary ranging. Astron. Astrophys. 433: 385–393

    ADS  Google Scholar 

  • Ji J., Li G. and Liu L. (2002). The dynamical simulations of the planets orbiting GJ 876. Astrophys. J. 572: 1041–1047

    ADS  Google Scholar 

  • Ji J., Liu L., Kinoshita H., Zhou J., Nakai H. and Li G. (2003). The librating companions in HD 37124, HD 12661, HD 82943, 47 Ursa Majoris, and GJ 876: alignment or antialignment?. Astrophys. J. 591: L57–L60

    ADS  Google Scholar 

  • Kaula W.M. (1961). Analysis of gravitational and geometric aspects geodetic utilization of satellites. Geophys. J. 5: 104–133

    Article  MATH  ADS  Google Scholar 

  • Kaula W.M. (1962). Development of the lunar and solar disturbing functions for a close satellite. Astron. J. 67: 300–303

    ADS  Google Scholar 

  • Kinoshita H. (1993). Motion of the orbital plane of a satellite due to a secular change of the obliquity of its mother planet. Celest. Mech. Dyn. Astro. 57: 359–368

    MATH  ADS  Google Scholar 

  • Kley W. (2000). On the migration of a system of protoplanets. MNRAS 313: L47–L51

    ADS  Google Scholar 

  • Kley W., Peitz J. and Bryden G. (2004). Evolution of planetary systems in resonance. Astron. Astrophys. 414: 735–747

    ADS  Google Scholar 

  • Kley W., Lee M.H., Murray N. and Peale S.J. (2005). Modeling the resonant planetary system GJ 876. Astron. Astrophys. 437: 727–742

    ADS  Google Scholar 

  • Konacki M., Maciejewski A.J. and Wolszczan A. (2000). Improved timing formula for the PSR B1257+12 planetary system. Astrophys. J. 544: 921–926

    ADS  Google Scholar 

  • Kopal Z. (1969). The precession and nutation of deformable bodies, III. Astrophys. Space Sci. 4: 427–458

    ADS  Google Scholar 

  • Kozai Y. (1959). The motion of a close earth satellite. Astron. J. 64: 367–377

    ADS  MathSciNet  Google Scholar 

  • Kozai Y. (1960). Effect of precession and nutation on the orbital elements of a close earth satellite. Astron. J. 65: 621–623

    ADS  MathSciNet  Google Scholar 

  • Kozai Y. (1962). Secular perturbations of asteroids with high inclination and eccentricity. Astron. J. 67: 591–598

    ADS  MathSciNet  Google Scholar 

  • Kuchner M.J. (2004). A minimum-mass extrasolar Nebula. Astrophys. J. 612: 1147–1151

    ADS  Google Scholar 

  • Laughlin G., Butler R.P., Fischer D.A., Marcy G.W., Vogt S.S. and Wolf A.S. (2005). The GJ 876 planetary system: a progress report. Astrophys. J. 622: 1182–1190

    ADS  Google Scholar 

  • Lee M.H. (2004). Diversity and origin of 2:1 orbital resonances in extrasolar planetary systems. Astrophys. J. 611: 517–527

    ADS  Google Scholar 

  • Lee M.H. and Peale S.J. (2002). Dynamics and origin of the 2:1 orbital resonances of the GJ 876 planets. Astrophys. J. 567: 596–609

    ADS  Google Scholar 

  • Lee M.H. and Peale S.J. (2003). Secular evolution of hierarchical planetary systems. Astrophys. J. 592: 1201–1216

    ADS  Google Scholar 

  • Lemaître A. and Henrard J. (1988). The 3/2 resonance. Celest. Mech. 43: 91–98

    ADS  Google Scholar 

  • Ling J.F. (1991). Application of the stroboscopic method to the stellar three-body problem. Astrophys. Space Sci. 185: 51–61

    MATH  ADS  MathSciNet  Google Scholar 

  • Malhotra R. (1994). Nonlinear resonances in the solar system. Physica D 77: 289–304

    ADS  Google Scholar 

  • Malhotra R. and Dermott S.F. (1990). The role of secondary resonances in the orbital history of Miranda. Icarus 85: 444–480

    ADS  Google Scholar 

  • Marcy G.W., Butler R.P., Fischer D., Vogt S.S., Lissauer J.J. and Rivera E.J. (2001). A pair of resonant planets orbiting GJ 876. Astrophys. J. 556: 296–301

    ADS  Google Scholar 

  • Métris G. (1991). Mean values of particular functions in the elliptic motion. Celest. Mech. Dyn. Astron. 52: 79–84

    ADS  MATH  Google Scholar 

  • Michtchenko T.A. and Ferraz-Mello S. (2001). Modeling the 5: 2 mean-motion resonance in the Jupiter-Saturn planetary system. Icarus 149: 357–374

    ADS  Google Scholar 

  • Morbidelli A. (2001). Chaotic Diffusion in Celestial Mechanics. Reg. Chaotic Dyn. 6(3): 277

    MathSciNet  ADS  Google Scholar 

  • Morbidelli A. (2002). Modern Celestial Mechanics: Aspects of Solar System Dynamics. Taylor & Francis, London, ISBN 0415279399

    Google Scholar 

  • Murdock J.A. (1978). Some mathematical aspects of spin-orbit resonance. Celest. Mech. 18: 237–253

    ADS  MathSciNet  MATH  Google Scholar 

  • Murray C.D. and Dermott S.F. (1999). Solar System Dynamics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Namouni F. (2005). On the origin of the eccentricities of extrasolar planets. Astron. J. 130: 280–294

    ADS  Google Scholar 

  • Peale S.J. (1976). Orbital resonances in the solar system. Ann. Rev. Astron. Astrophys. 14: 215–246

    ADS  Google Scholar 

  • Peale, S.J.: Orbital resonances, unusual configurations and exotic rotation states among planetary satellites, pp. 159–223. IAU Colloq.77: Some Background about Satellites (1986)

  • Penna G.D. (1999). Analytical and numerical results on the stability of a planetary precessional model. Celest. Mech. Dyn. Astr. 75: 103–124

    MATH  ADS  Google Scholar 

  • Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical recipes in FORTRAN. The art of scientific computing. University Press, Cambridge; c1992, 2nd edn. (1992)

  • Psychoyos D. and Hadjidemetriou J.D. (2005). Dynamics of 2/1 resonant extrasolar systems application to HD82943 and GLIESE876. Celest. Mech. Dyn. Astron. 92: 135–156

    MATH  ADS  MathSciNet  Google Scholar 

  • Rivera E.J., Lissauer J.J., Butler R.P., Marcy G.W., Vogt S.S., Fischer D.A., Brown T.M., Laughlin G. and Henry G.W. (2005). A 7.5 M planet orbiting the nearby Star, GJ 876. Astrophys. J. 634: 625–640

    ADS  Google Scholar 

  • Roig F., Simula A., Ferraz-Mello S. and Tsuchida M. (1998). The high-eccentricity asymmetric expansion of the disturbing function for non-planar resonant problems. Astron. Astrophys. 329: 339–349

    ADS  Google Scholar 

  • Rozelot J.P. and Roesch J. (1997). An upper bound to the solar oblateness. Solar Phys. 172: 11–18

    ADS  Google Scholar 

  • Rozelot J.P., Godier S. and Lefebvre S. (2001). On the theory of the oblateness of the Sun. Solar Phys. 198: 223–240

    ADS  Google Scholar 

  • Rubincam D.P. (2000). Pluto and Charon: a case of precession-orbit resonance?. J. Geophys. Res. 105: 26745–26756

    ADS  Google Scholar 

  • Sasselov D.D. and Lecar M. (2000). On the snow line in dusty protoplanetary disks. Astrophys. J. 528: 995–998

    ADS  Google Scholar 

  • Schaffer L. and Burns J.A. (1992). Lorentz resonances and the vertical structure of dusty rings – analytical and numerical results. Icarus 96: 65–84

    ADS  Google Scholar 

  • Shinkin V.N. (2001). Approximate analytic solutions of the averaged three-body problem at first-order resonance with large oblateness of the central Planet. Celest. Mech. Dyn. Astron. 79: 15–27

    MATH  ADS  MathSciNet  Google Scholar 

  • Sidlichovsky M. (1983). On the double averaged three-body problem. Celest. Mech. 29: 295–305

    MATH  ADS  MathSciNet  Google Scholar 

  • Snellgrove M.D., Papaloizou J.C.B. and Nelson R.P. (2001). On disc driven inward migration of resonantly coupled planets with application to the system around GJ876. Astron. Astrophys. 374: 1092–1099

    ADS  Google Scholar 

  • Sundman, K.: Sur les conditions nécessaires et suffisantes pour la convergence du développement de la fonction perturbatrice dans le mouvement plan. Öfversigt Finska Vetenskaps-Soc. (1916)

  • Šidlichovský M. and Nesvorný D. (1994). Temporary capture of grains in exterior resonances with the Earth: planar circular restricted three-body problem with Poynting-Robertson drag. Astron. Astrophys. 289: 972–982

    ADS  Google Scholar 

  • Thommes E.W. and Lissauer J.J. (2003). Resonant inclination excitation of migrating giant Planets. Astrophys. J. 597: 566–580

    ADS  Google Scholar 

  • Vakhidov A.A. (2001). Asteroid orbits in mixed resonances: some numerical experiments. Planet. Space Sci. 49: 793–797

    ADS  Google Scholar 

  • Varadi F., Ghil M. and Kaula W.M. (1999). Mass-weighted symplectic forms for the N-body problem. Celest. Mech. Dyn. Astron. 72: 187–199

    ADS  MathSciNet  Google Scholar 

  • Veras, D.: Dangers of Truncating the Disturbing Function In Small Body Solar System Dynamics. In: Proceeding of the New Trends in Astrodynamics and Applications III, American Institute of Physics Conference Series, Vol. 886, pp. 175–186 (2007)

  • Veras D. and Armitage P.J. (2007). Extrasolar planetary dynamics with a generalized planar Laplace-Lagrange secular theory. Astrophys. J. 661: 1311–1322

    ADS  Google Scholar 

  • Ward W.R. (1981). Solar nebula dispersal and the stability of the planetary system. I – scanning secular resonance theory. Icarus 47: 234–264

    ADS  Google Scholar 

  • Weidenschilling S.J. (1977). The distribution of mass in the planetary system and solar nebula. Astrophys. Space Sci. 51: 153–158

    ADS  Google Scholar 

  • Wiesel W. (1982). Saturn’s rings – resonance about an oblate planet. Icarus 51: 149–154

    ADS  Google Scholar 

  • Winter O.C. and Murray C.D. (1997). Resonance and chaos. I. First-order interior resonances. Astron. Astrophys. 319: 290–304

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitri Veras.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Veras, D. A resonant-term-based model including a nascent disk, precession, and oblateness: application to GJ 876. Celestial Mech Dyn Astr 99, 197–243 (2007). https://doi.org/10.1007/s10569-007-9097-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-007-9097-2

Keywords

Navigation