Skip to main content
Log in

On families of periodic solutions of the restricted three-body problem

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

We consider the plane circular restricted three-body problem. It is described by an autonomous Hamiltonian system with two degrees of freedom and one parameter \(\mu \in [0,1/2]\) which is the mass ratio of the two massive bodies. Periodic solutions of this problem form two-parameter families. We propose methods of computation of symmetric periodic solutions for all values of the parameter μ. Each solution has a period and two traces, namely, the plane and the vertical one. Two characteristics of a family, i.e., its intersection with the symmetry plane, are plotted in the four coordinate systems used in the investigations: two global and two local ones related to the two massive bodies. We also describe generating families, i.e., the limits of families as μ → 0, which are known almost explicitly. As an example, we consider the family h, which begins with retrograde circular orbits of infinitely small radius around the primary P 1 of bigger mass. For this family, we cite detailed data for μ = 0 and \(\mu \approx 10^{-3}\) and give a brief description of its evolution as μ increases up to μ = 1/2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abalakin, V.K., Aksenov, E.P., Grebennikov, E.A., Riabov, Yu.A.: Reference Guide on Celestial Mechanics and Astrodynamics, p. 584 Nauka, Moscow, (Russian) (1971)

  • Bartlett J.H. (1964). The restricted problem of three bodies (1). Kong. Dan. Vidensk, Selsk. Mat.-Fys. Skr. 2(7):48

    MATH  MathSciNet  Google Scholar 

  • Bray, T.A., Goudas, C.L.: Three-dimensional periodic oscillations about L 1, L 2, and L 3. In: (ed.), Advances in Astronomy and Astrophysics. Academic Press, New York and London, 5 71–130 (1967)

  • Breakwell J.V., Perko L.M. (1974). Second order matching in the restricted three-body problem (small μ). Celest. Mech. 9(4):437–450

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Broucke, M.R.: Periodic orbits in the restricted three-body problem with earth–moon masses. NASA Technical Report 32–1168, p. 92, Pasadena, (1968)

  • Bruno, A.D.: Researches on the restricted three-body problem. I.Periodic solutions to Hamiltonian system. Preprint of KIAM, 18, p. 44, Moscow, (Russian) (1972). Cosmic Research, 44(3) (English) (2006)

  • Bruno A.D. (1978a). Researches on the restricted three-body problem. II. Periodic solutions and arcs for μ = 0. Celest. Mech. 18(1):9–50

    Article  ADS  Google Scholar 

  • Bruno A.D. (1978b). Researches on the restricted three-body problem. III. Properties of solutions for μ = 0. Celest. Mech. 18(1):51–101

    Article  ADS  Google Scholar 

  • Bruno, A.D.: On periodic flybys of the moon. Preprint of KIAM, 91, p. 25, Moscow, (Russian) (1978c)

  • Bruno A.D. (1981). On periodic flybys of the moon. Celest. Mech. 24(3):255–268

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Bruno, A.D.: The Restricted 3-Body Problem. Plane Periodic Orbits, Nauka, p. 296, Moscow, (Russian) (1990), Walter de Gruyter, p. 368, Berlin, (English) (1994)

  • Bruno, A.D.: Periodic solutions to the restricted three-body problem of multiplicity one in Sun-Jupiter case. Preprint of KIAM, 66, p. 27, Moscow, (Russian) (1993)

  • Bruno, A.D.: Zero-multiple and retrograde periodic solutions to the restricted three-body problem. Preprint of KIAM, 93, p. 32, Moscow, (Russian) (1996)

  • Bruno, A.D.: Power Geometry in Algebraic and Differential Equations, p. 288, Fizmatlit, Nauka, (Russian) (1998), p. 385, Elsevier, Amsterdam, (English) (2000)

  • Bruno, A.D., Varin, V.P.: On families of periodic solutions to the restricted three-body problem. Preprint of KIAM, 10, p. 20, Moscow, (Russian) (2005a)

  • Bruno, A.D., Varin, V.P.: Family h of periodic solutions of the restricted problem for small μ. Preprint of KIAM, 67, p. 32, Moscow, (Russian) (2005b)

  • Bruno, A.D., Varin, V.P.: Family h of periodic solutions of the restricted problem for big μ. Preprint of KIAM, 64, p. 31, Moscow, (Russian) (2005c)

  • Hénon M. (1965a). Exploration Numérique du Problème Restreint. I – Masses égales, orbites périodique. Ann. Astrophys. 28(3):499–511

    ADS  Google Scholar 

  • Hénon M. (1965b). Exploration Numérique du Problème Restreint. II – Masses égales, stabilité des orbites périodique. Ann. Astrophys. 28(6):992–1007

    ADS  Google Scholar 

  • Hénon M. (1968). Sur les orbits interplanetaires qui rencontrent deux fois la terre. Bull. Astron. Ser. 3. 3(3):377–402

    MATH  Google Scholar 

  • Hénon M., Guyot M. (1970). Stability of periodic orbits in the restricted problem. In: Giacaglia G.E.O. (eds) Periodic Orbits, Stability and Resonances. D Reidel P.C., Dordrecht-Holland, pp. 349–374

    Google Scholar 

  • Hénon M. (1973). Vertical stability of periodic orbits in the restricted problem. Astron. Astrophys. 28:415–426

    MATH  ADS  Google Scholar 

  • Hénon M. (1997). Generating Families of the Restricted Three-Body Problem. Lect. Notes in Phys. monographs 52, Springer, Berlin

    Google Scholar 

  • Hénon M. Generating Families of the Restricted Three-Body Problem. II. Quantitative Study of Bifurcations, Lect. Notes in Phys. monographs 65, Springer, Berlin (2001).

  • Hitzl D.L., Hénon M. (1977a). Critical generating orbits for second species periodic solutions of the restricted problem. Celest. Mech. 15(4):421–452

    Article  ADS  Google Scholar 

  • Hitzl D.L., Hénon M. (1977b). The stability of second species periodic orbits in the restricted problem (μ  = 0). Acta Astronaut. 4:1019–1039

    Article  Google Scholar 

  • Kotoulas T., Voyatzis G. (2004). Comparative study of the 2:3 and 3:4 resonant motion with Neptune: an application of symplectic mappings and low frequency analysis. Celest. Mech. Dynam. Astron. 88(4):343–363

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Perko L.M. (1981). Second species solutions with an Oν), 0  < ν  < 1, near Moon passage. Celest. Mech. 24(2):155–171

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Strömgren, E.: Connaissance Actuelle des Orbits dans le Problème des Trois Corps, In: Publications and Minor Communications of Copenhagen Observatory, Publication 100. Copenhagen University, Astronomical Observatory, Denmark (1935)

  • Szebehely, V.: Theory of Orbits. The Restricted Problem of Three Bodies, p. 668, Academic Press, New York and London (1967), Russian translation: p. 656, Nauka, Moscow (1982).

  • Voyatzis G., Kotoulas T. (2005). Planar periodic orbits in exterior resonances with Neptune. Planetary and Space Science. 53:1189–1199

    Article  ADS  Google Scholar 

  • Voyatzis G., Kotoulas T., Hadjidemetriou J.D. (2005). Symmetric and nonsymmetric periodic orbits in the exterior mean motion resonances with Neptune. Celest. Mech. Dynam. Astron. 91(4):191–202

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor P. Varin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bruno, A.D., Varin, V.P. On families of periodic solutions of the restricted three-body problem. Celestial Mech Dyn Astr 95, 27–54 (2006). https://doi.org/10.1007/s10569-006-9021-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-006-9021-1

Keywords

Navigation