Skip to main content
Log in

Quinocetone triggered ER stress-induced autophagy via ATF6/DAPK1-modulated mAtg9a trafficking

  • Original Article
  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

The present study is undertaken to explore quinocetone-induced autophagy and its possible mechanism. Western blotting and green fluorescence protein (GFP)-LC3 vector transfection were performed to determine the ratio of LC3 conversion and its subcellular localization. Results revealed that the quinocetone induced autophagy in time- and dose-dependent manners. Besides, we tested the expressions of immunoglobulin heavy chain binding protein (BiP) and C/EBP homologous protein (CHOP) and the transcription of BiP, HerpUD, and sec24D by western blotting and RT-PCR, respectively. Results showed that quinocetone also induced endoplasmic reticulum (ER) stress during quinocetone-induced autophagy. Furthermore, we observed the cleavage of ATF6, the phosphorylation of MRLC, and the expression of death-associated protein kinase (DAPK1) by western blotting; the transcription of DAPK1 by RT-PCR; and the subcellular localization of ATF6 and mAtg9 by immunofluorescence. These results suggest that quinocetone stimulates the MRLC-mediated mAtg9 trafficking, which is critical for autophagosome formation, via the ATF6 upregulated expression of DAPK1. Last, we generated ATF6 and DAPK1 stable knockdown HepG2 cell lines and found that the conversion ratios of LC3 were decreased upon the treatment of quinocetone. Together, we propose that quinocetone induces autophagy through ER stress signaling pathway-induced cytoskeleton activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Baehrecke EH. Autophagy: dual roles in life and death? Nat Rev Mol Cell Biol. 2005;6(6):505–10.

    Article  CAS  PubMed  Google Scholar 

  • Bernales S, Papa FR, Walter P. Intracellular signaling by the unfolded protein response. Annu Rev Cell Dev Biol. 2006;22:487–508.

    Article  CAS  PubMed  Google Scholar 

  • Bialik S, Kimchi A. The death-associated protein kinases: structure, function, and beyond. Annu Rev Biochem. 2006;75:189–210.

    Article  CAS  PubMed  Google Scholar 

  • Bialik S, Kimchi A. The DAP-kinase interactome. Apoptosis. 2014;19(2):316–28.

    Article  CAS  PubMed  Google Scholar 

  • Chen Q, Tang S, Jin X, Zou J, Chen K, Zhang T, et al. Investigation of the genotoxicity of quinocetone, carbadox and olaquindox in vitro using Vero cells. Food Chem Toxicol. 2009;47(2):328–34.

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Xu S, Liu L, Wen X, Xu Y, Chen J, et al. Cab45S inhibits the ER stress-induced IRE1-JNK pathway and apoptosis via GRP78/BiP. Cell Death Dis. 2014;5:e1219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita Y, Yamashita T. Role of DAPK in neuronal cell death. Apoptosis. 2014;19(2):339–45.

    Article  CAS  PubMed  Google Scholar 

  • Gade P, Ramachandran G, Maachani UB, Rizzo MA, Okada T, Prywes R, et al. An IFN-gamma-stimulated ATF6-C/EBP-beta-signaling pathway critical for the expression of death associated protein kinase 1 and induction of autophagy. Proc Natl Acad Sci U S A. 2012;109(26):10316–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV, et al. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ. 2012;19(1):107–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He C, Klionsky DJ. Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet. 2009;43:67–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hetz C. The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol. 2012;13(2):89–102.

    CAS  PubMed  Google Scholar 

  • Hotokezaka Y, Katayama I, van Leyen K, Nakamura T. GSK-3beta-dependent downregulation of gamma-taxilin and alphaNAC merge to regulate ER stress responses. Cell Death Dis. 2015;6:e1719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ihsan A, Wang X, Zhang W, Tu H, Wang Y, Huang L, et al. Genotoxicity of quinocetone, cyadox and olaquindox in vitro and in vivo. Food Chem Toxicol. 2013;59:207–14.

    Article  CAS  PubMed  Google Scholar 

  • Ivanovska J, Mahadevan V, Schneider-Stock R. DAPK and cytoskeleton-associated functions. Apoptosis. 2014;19(2):329–38.

    Article  CAS  PubMed  Google Scholar 

  • Jin X, Chen Q, Tang SS, Zou JJ, Chen KP, Zhang T, et al. Investigation of quinocetone-induced genotoxicity in HepG2 cells using the comet assay, cytokinesis-block micronucleus test and RAPD analysis. Toxicol in Vitro. 2009;23(7):1209–14.

    Article  CAS  PubMed  Google Scholar 

  • Kim R, Emi M, Tanabe K, Murakami S. Role of the unfolded protein response in cell death. Apoptosis. 2006;11(1):5–13.

    Article  CAS  PubMed  Google Scholar 

  • Kim I, Xu W, Reed JC. Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nat Rev Drug Discov. 2008;7(12):1013–30.

    Article  CAS  PubMed  Google Scholar 

  • Kokame K et al. Herp, a new ubiquitin-like membrane protein induced by endoplasmic reticulum stress. J Biol Chem. 2000;275(42):32846–53.

    Article  CAS  PubMed  Google Scholar 

  • Kroemer G, Marino G, Levine B. Autophagy and the integrated stress response. Mol Cell. 2010;40(2):280–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Ni M, Lee B, Barron E, Hinton DR, Lee AS. The unfolded protein response regulator GRP78/BiP is required for endoplasmic reticulum integrity and stress-induced autophagy in mammalian cells. Cell Death Differ. 2008;15(9):1460–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin JH, Walter P, Yen TS. Endoplasmic reticulum stress in disease pathogenesis. Annu Rev Pathol. 2008;3:399–425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Logue SE, Cleary P, Saveljeva S, Samali A. New directions in ER stress-induced cell death. Apoptosis. 2013;18(5):537–46.

    Article  PubMed  Google Scholar 

  • Mayer MP, Bukau B. Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci. 2005;62(6):670–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizushima N, Yoshimori T. How to interpret LC3 immunoblotting. Autophagy. 2007;3(6):542–5.

    Article  CAS  PubMed  Google Scholar 

  • Mizushima N, Yoshimori T, Ohsumi Y. The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol. 2011;27:107–32.

    Article  CAS  PubMed  Google Scholar 

  • Noda T, Kim J, Huang WP, Baba M, Tokunaga C, Ohsumi Y, et al. Apg9p/Cvt7p is an integral membrane protein required for transport vesicle formation in the Cvt and autophagy pathways. J Cell Biol. 2000;148(3):465–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogata M et al. Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol Cell Biol. 2006;26(24):9220–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ozcan L, Tabas I. Role of endoplasmic reticulum stress in metabolic disease and other disorders. Annu Rev Med. 2012;63:317–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schroder M, Kaufman RJ. The mammalian unfolded protein response. Annu Rev Biochem. 2005;74:739–89.

    Article  PubMed  Google Scholar 

  • Suvorova ES et al. Identification of a human orthologue of Sec34p as a component of the cis-Golgi vesicle tethering machinery. J Biol Chem. 2001;276(25):22810–8.

    Article  CAS  PubMed  Google Scholar 

  • Tang HW, Wang YB, Wang SL, Wu MH, Lin SY, Chen GC. Atg1-mediated myosin II activation regulates autophagosome formation during starvation-induced autophagy. EMBO J. 2011;30(4):636–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Zhang W, Wang YL, Peng DP, Ihsan A, Huang XJ, et al. Acute and sub-chronic oral toxicological evaluations of quinocetone in Wistar rats. Regul Toxicol Pharmacol. 2010;58(3):421–7.

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Zhong Y, Luo XA, Wu SA, Xiao R, Bao W, et al. Pu-erh black tea supplementation decreases quinocetone-induced ROS generation and oxidative DNA damage in Balb/c mice. Food Chem Toxicol. 2011;49(2):477–84.

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Zhang W, Wang YL, Ihsan A, Dai MH, Huang LL, et al. Two generation reproduction and teratogenicity studies of feeding quinocetone fed to Wistar rats. Food Chem Toxicol. 2012;50(5):1600–9.

    Article  PubMed  Google Scholar 

  • Yang W, Fu J, Xiao X, Yan H, Bao W, Wang D, et al. Quinocetone triggers oxidative stress and induces cytotoxicity and genotoxicity in human peripheral lymphocytes of both genders. J Sci Food Agric. 2013;93(6):1317–25.

    Article  CAS  PubMed  Google Scholar 

  • Yu M, Xu M, Liu Y, Yang W, Rong Y, Yao P, et al. Nrf2/ARE is the potential pathway to protect Sprague–Dawley rats against oxidative stress induced by quinocetone. Regul Toxicol Pharmacol. 2013;66(3):279–85.

    Article  CAS  PubMed  Google Scholar 

  • Yu M, Wang D, Xu M, Liu Y, Wang X, Liu J, et al. Quinocetone-induced Nrf2/HO-1 pathway suppression aggravates hepatocyte damage of Sprague–Dawley rats. Food Chem Toxicol. 2014;69:210–9.

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Wang C, Tang S, Sun Y, Zhao D, Zhang S, et al. TNFR1/TNF-alpha and mitochondria interrelated signaling pathway mediates quinocetone-induced apoptosis in HepG2 cells. Food Chem Toxicol. 2013;62:825–38.

    Article  CAS  PubMed  Google Scholar 

  • Zhao D, Wang C, Tang S, Zhang C, Zhang S, Zhou Y, et al. Reactive oxygen species-dependent JNK downregulated olaquindox-induced autophagy in HepG2 cells. J Appl Toxicol. 2014;35(7):709–16.

    Article  PubMed  Google Scholar 

  • Zhong JL, Zhang GJ, Shen XG, Wang L, Fang BH, Ding HZ. Pharmacokinetics of quinocetone and its major metabolites in swine after intravenous and oral administration. Agric Sci China. 2011;10(8):1292–300.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Nature Science Foundation of China (3172486).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xilong Xiao.

Ethics declarations

Conflict of interest

The authors ensure that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Zhang, S., Dai, C. et al. Quinocetone triggered ER stress-induced autophagy via ATF6/DAPK1-modulated mAtg9a trafficking. Cell Biol Toxicol 32, 141–152 (2016). https://doi.org/10.1007/s10565-016-9323-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-016-9323-3

Keywords

Navigation