Skip to main content

Advertisement

Log in

The impact of autophagy on cell death modalities in CRL-5876 lung adenocarcinoma cells after their exposure to γ-rays and/or erlotinib

  • Original Article
  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

In most patients with lung cancer radiation treatment is used either as single agent or in combination with radiosensitizing drugs. However, the mechanisms underlying combined therapy and its impact on different modes of cell death have not yet been fully elucidated. We aimed to examine effects of single and combined treatments with γ-rays and erlotinib on radioresistant CRL-5876 human lung adenocarcinoma cells with particular emphasis on cell death. CRL-5876 cells were treated with γ-rays and/or erlotinib and changes in cell cycle, DNA repair dynamics, ultrastructure, nuclear morphology and protein expression were monitored at different time points. To reveal the relationship between types of cell death that arise after these treatments, autophagy was blocked with chloroquine. We found that higher dose of γ-rays causes G2/M arrest while adding of erlotinib to this treatment decreases the number of cells in S phase. Impact of erlotinib on kinetics of disappearance of irradiation-induced DNA double strand breaks is reflected in the increase of residual γ-H2AX foci after 24 h. γ-rays provoke cytoprotective autophagy which precedes development of senescence. Erlotinib predominantly induces apoptosis and enlarges the number of apoptotic cells in the irradiated CRL-5876 cells. Chloroquine improved cytotoxicity induced by radiation and erlotinib, increased apoptosis and decreased senescence in the CRL-5876 cells. The results obtained on CRL-5876 cells indicate significant radiosensitizing effect of erlotinib and suggest that chloroquine in the combination with the above treatments may have an additional antitumor effect in lung adenocarcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abbas T, Dutta A. p21 in cancer: intricate networks and multiple activities. Nat Rev Cancer. 2009;9:400–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abend M. Reasons to reconsider the significance of apoptosis for cancer therapy. Int J Radiat Biol. 2003;79:927–41.

    Article  CAS  PubMed  Google Scholar 

  • Amaravadi RK, Thompson CB. The roles of therapy-induced autophagy and necrosis in cancer treatment. Clin Cancer Res. 2007;13:7271–79.

    Article  CAS  PubMed  Google Scholar 

  • Anderson D, Andrais B, Mirzayans R, Siegbahn EA, Fallone BG, Warkentin B. Comparison of two methods for measuring γ-H2AX nuclear fluorescence as a marker of DNA damage in cultured human cells: applications for microbeam radiation therapy. JINST. 2013;8:C06008. doi:10.1088/1748-0221/8/06/C06008.

    Article  Google Scholar 

  • Axelrod M, Gordon VL, Conaway M, Tarcsafalvi A, Neitzke DJ, Gioeli D, et al. Combinatorial drug screening identifies compensatory pathway interactions and adaptive resistance mechanisms. Oncotarget. 2013;4:622–35.

    Article  PubMed  PubMed Central  Google Scholar 

  • Balcer-Kubiczek EK. Apoptosis in radiation therapy: a double-edged sword. Exp Oncol. 2012;34:277–85.

    CAS  PubMed  Google Scholar 

  • Banáth JP, Klokov D, MacPhail SH, Banuelos CA, Olive PL. Residual gamma H2AX foci as an indication of lethal DNA lesions. BMC Cancer. 2010;10:4.

    Article  PubMed  PubMed Central  Google Scholar 

  • Baskar R, Lee KA, Yeo R, Yeoh KW. Cancer and radiation therapy: current advances and future directions. Int J Med Sci. 2012;9:193–99.

    Article  PubMed  PubMed Central  Google Scholar 

  • Benbrook DM, Long A. Integration of autophagy, proteasomal degradation, unfolded protein response and apoptosis. Exp Oncol. 2012;34:286–97.

    CAS  PubMed  Google Scholar 

  • Bӧcker W, Iliakis G. Computational Methods for analysis of foci: validation for radiation-induced gamma-H2AX foci in human cells. Radiat Res. 2006;165:113–24.

    Article  Google Scholar 

  • Brown JM, Attardi LD. The role of apoptosis in cancer development and treatment response. Nat Rev Cancer. 2005;5:231–37.

    CAS  PubMed  Google Scholar 

  • Cerella C, Teiten MH, Radogna F, Dicato M, Diederich M. From nature to bedside: pro-survival and cell death mechanisms as therapeutic targets in cancer treatment. Biotechnol Adv. 2014;32:1111–22.

    Article  CAS  PubMed  Google Scholar 

  • Chen N, Karantza V. Autophagy as a therapeutic target in cancer. Cancer Biol Ther. 2011;11:157–68.

    Article  PubMed  PubMed Central  Google Scholar 

  • Choi KS. Autophagy and cancer. Exp Mol Med. 2012;44:109–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cufi S, Vazquez-Martin A, Oliveras-Ferraros C, Corominas-Faja B, Cuyàs E, Lopez-Bonet E, et al. The anti-malarial chloroquine overcomes primary resistance and restores sensitivity to trastuzumab in HER2-positive breast cancer. Sci Rep. 2013;3:2469.

    PubMed  PubMed Central  Google Scholar 

  • Debacq-Chainiaux F, Erusalimsky JD, Campisi J, Toussaint O. Protocols to detect senescence-associated beta-galactosidase (SA-betagal) activity, a biomarker of senescent cells in culture and in vivo. Nat Protoc. 2009;4:1798–806.

    Article  CAS  PubMed  Google Scholar 

  • Fan C, Wang W, Zhao B, Zhang S, Miao J. Chloroquine inhibits cell growth and induces cell death in A549 lung cancer cells. Bioorg Med Chem. 2006;14:3218–22.

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Cuesta L, Plenker D, Osada H, Sun R, Menon R, Leenders F, et al. CD74-NRG1 fusions in lung adenocarcinoma. Cancer Discov. 2014;4:415–22.

    Article  CAS  PubMed  Google Scholar 

  • Firat E, Gaedicke S, Tsurumi C, Esser N, Weyerbrock A, Niedermann G. Delayed cell death associated with mitotic catastrophe in γ-irradiated stem-like glioma cells. Radiat Oncol. 2011;6:71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gewirtz DA. Autophagy and senescence in cancer therapy. J Cell Physiol. 2014;229:6–9.

    CAS  PubMed  Google Scholar 

  • Goehe RW, Di X, Sharma K, Bristol ML, Henderson SC, Valerie K, et al. The autophagy-senescence connection in chemotherapy: must tumor cells (self) eat before they sleep? J Pharmacol Exp Ther. 2012;343:763–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong A, Ye S, Xiong E, Guo W, Zhang Y, Peng W, et al. Autophagy contributes to ING4-induced glioma cell death. Exp Cell Res. 2013;319:1714–23.

    Article  CAS  PubMed  Google Scholar 

  • Gorski SM, Ries J, Lum JJ. Targeting autophagy: the Achilles’ heel of cancer. Autophagy. 2012;8:1279–80.

    Article  CAS  PubMed  Google Scholar 

  • Gozuacik D, Kimchi A. Autophagy as a cell death and tumor suppressor mechanism. Oncogene. 2004;23(16):2891–906.

    Article  CAS  PubMed  Google Scholar 

  • Jiang H, Cheng D, Liu W, Peng J, Feng J. Protein kinase C inhibits autophagy and phosphorylates LC3. Biochem Biophys Res Commun. 2010;395:471–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joiner M, van der Kogel A. Basic clinical radiobiology. 4th ed. London, UK: Hodder Arnold; 2009.

    Google Scholar 

  • Keta O, Bulat T, Koricanac L, Zakula J, Cuttone G, Privitera G, et al. Radiosensitization of non-small cell lung carcinoma by EGFR inhibition. Nucl Tecnol Radiat. 2014;29:233–41.

    Article  Google Scholar 

  • Kim KW, Moretti L, Mitchell LR, Jung DK, Lu B. Endoplasmic reticulum stress mediates radiation-induced autophagy by perk-eIF2alpha in caspase-3/7-deficient cells. Oncogene. 2010;29:3241–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kondratskyi A, Yassine M, Slomianny C, Kondratska K, Gordienko D, Dewailly E, et al. Identification of ML-9 as a lysosomotropic agent targeting autophagy and cell death. Cell Death Dis. 2014;5:e1193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar R, Chaudhary K, Gupta S, Singh H, Kumar S, Gautam A, et al. CancerDR: cancer drug resistance database. Sci Rep. 2013;3:1445.

    PubMed  PubMed Central  Google Scholar 

  • Kurz DJ, Decary S, Hong Y, Erusalimsky JD. Senescence-associated (beta)-galactosidase reflects an increase in lysosomal mass during replicative ageing of human endothelial cells. J Cell Sci. 2000;113:3613–22.

    CAS  PubMed  Google Scholar 

  • Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–85.

    Article  CAS  PubMed  Google Scholar 

  • Larsen JE, Cascone T, Gerber DE, Heymach JV, Minna JD. Targeted therapies for lung cancer: clinical experience and novel agents. Cancer J. 2011;17:512–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JS, Kwon OY, Choi HS, Hong HP, Ko YG. Application of the Sequential Organ Failure Assessment (SOFA) score in patients with advanced cancer who present to the ED. Am J Emerg Med. 2012;30:362–66.

    Article  PubMed  Google Scholar 

  • Li YY, Lam SK, Mak JC, Zheng CY, Ho JC. Erlotinib-induced autophagy in epidermal growth factor receptor mutated non-small cell lung cancer. Lung Cancer. 2013;81:354–61.

    Article  PubMed  Google Scholar 

  • Liang B, Kong D, Liu Y, Liang N, He M, Ma S, et al. Autophagy inhibition plays the synergetic killing roles with radiation in the multi-drug resistant SKVCR ovarian cancer cells. Radiat Oncol. 2012;7:213.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193:265–75.

    CAS  PubMed  Google Scholar 

  • Mancias JD, Kimmelman AC. Targeting autophagy addiction in cancer. Oncotarget. 2011;2:1302–06.

    Article  PubMed  PubMed Central  Google Scholar 

  • Maycotte P, Aryal S, Cummings CT, Thorburn J, Morgan MJ, Thorburn A. Chloroquine sensitizes breast cancer cells to chemotherapy independent of autophagy. Autophagy. 2012;8:200–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehta VK. Radiotherapy and erlotinib combined: review of the preclinical and clinical evidence. Front Oncol. 2012;2:31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murray D, Mirzayans R. Role of therapy-induced cellular senescence in tumor cells and its modification in radiotherapy: the good, the bad and the ugly. J Nucl Med Radiat Ther. 2013;S6:018.

    Google Scholar 

  • Muschel RJ, Soto DE, McKenna WG, Bernhard EJ. Radiosensitization and apoptosis. Oncogene. 1998;17:3359–63.

    Article  PubMed  Google Scholar 

  • Odell ID, Cook D. Immunofluorescence techniques. J Investig Dermatol. 2013;133:e4.

    Article  CAS  PubMed  Google Scholar 

  • Palumbo S, Comincini S. Autophagy and ionizing radiation in tumors: the “survive or not survive” dilemma. J Cell Physiol. 2013;228:1–8.

    Article  CAS  PubMed  Google Scholar 

  • Petrovic I, Ristic-Fira A, Todorovic D, Valastro L, Cirrone P, Cuttone G. Radiobiological analysis of human melanoma cells on the 62 meV CATANA proton beam. Int J Radiat Biol. 2006;82:251–65.

    Article  CAS  PubMed  Google Scholar 

  • Petrovic I, Ristic-Fira A, Todorovic D, Koricanac L, Valastro L, Cirrone P, et al. Response of a radioresistant human melanoma cell line along the proton spread-out Bragg peak. Int J Radiat Biol. 2010;86:742–51.

    Article  CAS  PubMed  Google Scholar 

  • Prokakis C, Koletsis EN, Apostolakis E, Chatzimichalis A, Dougenis D. Preoperative chemotherapy in early-stage (stage IB-IIIA) resectable non small cell lung cancer. Is it justified? J BUON. 2008;13:161–68.

    PubMed  Google Scholar 

  • Provencio M, Isla D, Sánchez A, Cantos B. Inoperable stage III non-small cell lung cancer: current treatment and role of vinorelbine. J Thorac Dis. 2011;3:197–204.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qu YY, Hu SL, Xu XY, Wang RZ, Yu HY, Xu JY, et al. Nimotuzumab enhances the radiosensitivity of cancer cells in vitro by inhibiting radiation-induced DNA damage repair. PLoS One. 2013;8:e70727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao B, Lain S, Thompson AM. p53-Based cyclotherapy: exploiting the “guardian of the genome” to protect normal cells from cytotoxic therapy. Br J Cancer. 2013;109:2954–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ricci MS, Zong WX. Chemotherapeutic approaches for targeting cell death pathways. Oncologist. 2006;11:342–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakuma Y, Matsukuma S, Nakamura Y, Yoshihara M, Koizume S, Sekiguchi H, et al. Enhanced autophagy is required for survival in EGFR-independent EGFR-mutant lung adenocarcinoma cells. Lab Investig. 2013;93:1137–46.

    Article  CAS  PubMed  Google Scholar 

  • Salakou S, Kardamakis D, Tsamandas AC, Zolota V, Apostolakis E, Tzelepi V, et al. Increased Bax/Bcl-2 ratio up-regulates caspase-3 and increases apoptosis in the thymus of patients with myasthenia gravis. In Vivo. 2007;21:123–32.

    CAS  PubMed  Google Scholar 

  • Schonthal AH. Endoplasmic reticulum stress: its role in disease and novel prospects for therapy. Scientifica (Cairo). 2012;2012:857516.

    Google Scholar 

  • Silva MT. Secondary necrosis: the natural outcome of the complete apoptotic program. FEBS Lett. 2010;584:4491–99.

    Article  CAS  PubMed  Google Scholar 

  • Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D, et al. New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst. 1990;82:1107–12.

    Article  CAS  PubMed  Google Scholar 

  • Solomon VR, Lee H. Chloroquine and its analogs: a new promise of an old drug for effective and safe cancer therapies. Eur J Pharmacol. 2009;625:220–33.

    Article  CAS  PubMed  Google Scholar 

  • Tang J, Salama R, Gadgeel SM, Sarkar FH, Ahmad A. Erlotinib resistance in lung cancer: current progress and future perspectives. Front Pharmacol. 2013;4:5.

    Article  Google Scholar 

  • Tasdemir E, Galluzzi L, Maiuri MC, Criollo A, Vitale I, Hangen E, et al. Methods for assessing autophagy and autophagic cell death. Methods Mol Biol. 2008;445:29–76.

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Morsbach F, Sander D, Gheorghiu L, Nanda A, Benes C, et al. EGF receptor inhibition radiosensitizes NSCLC cells by inducing senescence in cells sustaining DNA double-strand breaks. Cancer Res. 2011;71:6261–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watters JW, Roberts CJ. Developing gene expression signatures of pathway deregulation in tumors. Mol Cancer Ther. 2006;5:2444–49.

    Article  CAS  PubMed  Google Scholar 

  • Yang ZJ, Chee CE, Huang S, Sinicrope FA. The role of autophagy in cancer: therapeutic implications. Mol Cancer Ther. 2011;10:1533–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan J, Luo K, Deng M, Li Y, Yin P, Gao B, et al. HERC2-USP20 axis regulates DNA damage checkpoint through Claspin. Nucleic Acids Res. 2014;42:13110–21.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zong WX, Thompson CB. Necrotic death as a cell fate. Genes Dev. 2006;20:1–15.

    Article  CAS  PubMed  Google Scholar 

  • Zou Y, Ling YH, Sironi J, Schwartz EL, Perez-Soler R, Piperdi B. The autophagy inhibitor chloroquine overcomes the innate resistance of wild-type EGFR non-small-cell lung cancer cells to erlotinib. J Thorac Oncol. 2013;8:693–702.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Education, Science and Technological Development of Serbia (grants 173046 and 171019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandra Ristić-Fira.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keta, O., Bulat, T., Golić, I. et al. The impact of autophagy on cell death modalities in CRL-5876 lung adenocarcinoma cells after their exposure to γ-rays and/or erlotinib. Cell Biol Toxicol 32, 83–101 (2016). https://doi.org/10.1007/s10565-016-9319-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-016-9319-z

Keywords

Navigation