Skip to main content

Advertisement

Log in

Three common pathways of nephrotoxicity induced by halogenated alkenes

  • Review Article
  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

Glutathione-dependent bioactivation is a common pathway in nephrotoxicity caused by haloalkanes and haloalkenes. Glutathione conjugation forms the link between halogenated hydrocarbons, based on the formation of an episulfonium ion (vicinal halomethanes) or a cysteine conjugate (haloalkenes). Herein, we review the metabolic pathways underlying the nephrotoxic effects of the three well-known haloalkenes trichloroethylene, tetrachloroethylene, and hexachloro-1:3-butadiene to emphasize the role of cysteine-conjugate β-lyase and the oxidative metabolism in renal toxicity. Activation by cysteine-conjugate β-lyase is the best-characterized mechanism causing toxicity due to haloalkene treatment in experimental models. However, the severity of toxicity differs considerably, with S-(1,2,2-trichlorovinyl)-l-cysteine being more toxic than S-(1,2-dichlorovinyl)-l-cysteine, which is in turn more toxic than S-(1,2,3,4,4-pentachloro-1:3-butadienyl)-l-cysteine. Moreover, two oxidative pathways involving cysteine S-conjugates (mediated by flavin-containing monooxigenase 3) and N-acetyl-l-cysteine conjugates (mediated by cytochrome P-450 3A) form derived sulfoxides, which represent alternative metabolites with toxic effects. In vitro and in vivo studies showed that sulfoxide metabolites are more toxic than cysteine-conjugate derivates. The cytochrome P-450 3A family, on the other hand, is sex specific, and its expression has only been reported in adult male rats and rabbits. In summary, haloalkenes are highly nephrotoxic in vivo and in vitro and their toxicity mechanisms are well documented experimentally. However, little information is available on their toxicity in humans, except for the carcinogenic effects established for high exposure levels of trichloroethylene and tetrachloroethylene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adams B, Lowpetch K, Thorndycroft F, Whyte SM, Young DW. Stereochemistry of reactions of the inhibitor/substrates L- and D-beta-chloroalanine with beta-mercaptoethanol catalysed by L-aspartate aminotransferase and D-amino acid aminotransferase respectively. Org Biomol Chem. 2005;3:3357–64.

    Article  CAS  PubMed  Google Scholar 

  • Anders MW. Glutathione-dependent bioactivation of haloalkanes and haloalkenes. Drug Metab Rev. 2004;36:583–94.

    Article  CAS  PubMed  Google Scholar 

  • Barshteyn N, Elfarra AA. Globin monoadducts and cross-links provide evidence for the presence of S-(1,2-dichlorovinyl)-L-cysteine sulfoxide, chlorothioketene, and 2-chlorothionoacetyl chloride in the circulation in rats administered S-(1,2-dichlorovinyl)-L-cysteine. Chem Res Toxicol. 2009;22:1629–38.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bartsch H, Malaveille C, Barbin A, Planche G. Mutagenic and alkylating metabolites of halo-ethylenes, chlorobutadienes and dichlorobutenes produced by rodent or human liver tissues. Evidence for oxirane formation by P450-linked microsomal mono-oxygenases. Arch Toxicol. 1979;41:249–77.

    Article  CAS  PubMed  Google Scholar 

  • Bernauer U, Birner G, Dekant W, Henschler D. Biotransformation of trichloroethene: dose-dependent excretion of 2,2,2-trichloro-metabolites and mercapturic acids in rats and humans after inhalation. Arch Toxicol. 1996;70:338–46.

    Article  CAS  PubMed  Google Scholar 

  • Berndt WO, Mehendale HM. Effects of hexachlorobutadiene (HCBD) on renal function and renal organic ion transport in the rat. Toxicology. 1979;14:55–65.

    Article  CAS  PubMed  Google Scholar 

  • Birner G, Vamvakas S, Dekant W, Henschler D. Nephrotoxic and genotoxic N-acetyl-S-dichlorovinyl-L-cysteine is a urinary metabolite after occupational 1,1,2-trichloroethene exposure in humans: implications for the risk of trichloroethene exposure. Environ Health Perspect. 1993;99:281–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Birner G, Werner M, Ott MM, Dekant W. Sex differences in hexachlorobutadiene biotransformation and nephrotoxicity. Toxicol Appl Pharmacol. 1995;132:203–12.

    Article  CAS  PubMed  Google Scholar 

  • Birner G, Rutkowska A, Dekant W. N-Acetyl-S-(1,2,2-trichlorovinyl)-L-cysteine and 2,2,2-trichloroethanol: two novel metabolites of tetrachloroethene in humans after occupational exposure. Drug Metab Dispos. 1996;24:41–8.

    CAS  PubMed  Google Scholar 

  • Birner G, Bernauer U, Werner M, Dekant W. Biotransformation, excretion and nephrotoxicity of haloalkene-derived cysteine S-conjugates. Arch Toxicol. 1997;72:1–8.

    Article  CAS  PubMed  Google Scholar 

  • Birner G, Werner M, Rosner E, Mehler C, Dekant W. Biotransformation, excretion, and nephrotoxicity of the hexachlorobutadiene metabolite (E)-N-acetyl-S-(1,2,3,4, 4-pentachlorobutadienyl)-L-cysteine sulfoxide. Chem Res Toxicol. 1998;11:750–7.

    Article  CAS  PubMed  Google Scholar 

  • Black RM, Read RW. Biological fate of sulphur mustard, 1,1′-thiobis(2-chloroethane): identification of ß-lyase metabolites and hydrolysis products in human urine. Xenobiotica. 1995;25:167–73.

    Article  CAS  PubMed  Google Scholar 

  • Buben JA, O’Flaherty EJ. Delineation of the role of metabolism in the hepatotoxicity of trichloroethylene and perchloroethylene: a dose–effect study. Toxicol Appl Pharmacol. 1985;78:105–22.

    Article  CAS  PubMed  Google Scholar 

  • Bull RJ. Mode of action of liver tumor induction by trichloroethylene and its metabolites, trichloroacetate and dichloroacetate. Environ Health Perspect. 2000;108 Suppl 2:241–59.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Carrieri M, Magosso D, Piccoli P, Zanetti E, Trevisan A, Bartolucci GB. Acute, nonfatal intoxication with trichloroethylene. Arch Toxicol. 2007;81:529–32.

    Article  CAS  PubMed  Google Scholar 

  • Cavalleri A, Gobba F, Paltrinieri M, Fantuzzi G, Righi E, Aggazzotti G. Perchloroethylene exposure can induce colour vision loss. Neurosci Lett. 1994;179:162–6.

    Article  CAS  PubMed  Google Scholar 

  • Cederberg H, Henriksson J, Binderup ML. DNA damage detected by the alkaline comet assay in the liver of mice after oral administration of tetrachloroethylene. Mutagenesis. 2010;25:133–8.

    Article  CAS  PubMed  Google Scholar 

  • Chiu WA, Ginsberg GL. Development and evaluation of a harmonized physiologically based pharmacokinetic (PBPK) model for perchloroethylene toxicokinetics in mice, rats, and humans. Toxicol Appl Pharmacol. 2011;253:203–34.

    Article  CAS  PubMed  Google Scholar 

  • Chiusolo A, Defazio R, Casartelli A, Bocchini N, Mongillo M, Zanetti E, et al. Regucalcin down-regulation in rat kidney tissue after treatment with nephrotoxicants. Toxicol Lett. 2008;182:84–90.

    Article  CAS  PubMed  Google Scholar 

  • Chiusolo A, Defazio R, Zanetti E, Mongillo M, Mori N, Cristofori P, et al. Kidney injury molecule-1 expression in rat proximal tubule after treatment with segment-specific nephrotoxicants: a tool for early screening of potential kidney toxicity. Toxicol Pathol. 2010;38:338–45.

    Article  CAS  PubMed  Google Scholar 

  • Cooper AJ, Wang J, Gartner CA, Bruschi SA. Co-purification of mitochondrial HSP70 and mature protein disulfide isomerase with a functional rat kidney high-M(r) cysteine S-conjugate beta-lyase. Biochem Pharmacol. 2001;62:1345–53.

    Article  CAS  PubMed  Google Scholar 

  • Cooper AJ, Krasnikov BF, Niatsetskaya ZV, Pinto JT, Callery PS, Villar MT, et al. Cysteine S-conjugate β-lyases: important roles in the metabolism of naturally occurring sulfur and selenium-containing compounds, xenobiotics and anticancer agents. Amino Acids. 2011;41:7–27.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cristofori P, Zanetti E, Fregona D, Piaia A, Trevisan A. Renal proximal tubule segment-specific nephrotoxicity: an overview on biomarkers and histopathology. Toxicol Pathol. 2007;35:270–5.

    Article  CAS  PubMed  Google Scholar 

  • Cristofori P, Defazio R, Chiusolo A, Mongillo M, Bartolucci GB, Chiara F, et al. Hyaline droplet accumulation in kidney of rats treated with hexachloro-1:3-butadiene: influence of age, dose and time-course. J Appl Toxicol. 2013;33:183–9.

    Article  PubMed  Google Scholar 

  • Daoud AH, Irving CC. Methylation of DNA in rat liver and intestine by dimethylnitrosamine and N-methylnitrosourea. Chem Biol Interact. 1977;16:135–43.

    Article  CAS  PubMed  Google Scholar 

  • Davis SI, Laszlo Pallos L, Wu JQ, Sapp II JH, Cusack C. ATSDR’s trichloroethylene subregistry methods and results: 1989–2000. Arch Environ Occup Health. 2005;60:130–9.

    Article  CAS  PubMed  Google Scholar 

  • Dekant W. Chemical-induced nephrotoxicity mediated by glutathione S-conjugate formation. Toxicol Lett. 2001;124:21–36.

    Article  CAS  PubMed  Google Scholar 

  • Dekant W. Biosynthesis of toxic glutathione conjugates from halogenated alkenes. Toxicol Lett. 2003;144:49–54.

    Article  CAS  PubMed  Google Scholar 

  • Dekant W, Vamvakas S. Biotransformation and membrane transport in nephrotoxicity. Crit Rev Toxicol. 1996;26:309–34.

    Article  CAS  PubMed  Google Scholar 

  • Dekant W, Vamvakas S, Berthold K, Schmidt S, Wild D, Henschler D. Bacterial beta-lyase mediated cleavage and mutagenicity of cysteine conjugates derived from the nephrocarcinogenic alkenes trichloroethylene, tetrachloroethylene and hexachlorobutadiene. Chem Biol Interact. 1986;60:31–45.

    Article  CAS  PubMed  Google Scholar 

  • Dekant W, Martens G, Vamvakas S, Metzler M, Henschler D. Bioactivation of tetrachloroethylene. Role of glutathione S-transferase-catalyzed conjugation versus cytochrome P-450-dependent phospholipid alkylation. Drug Metab Dispos. 1987;15:702–9.

    CAS  PubMed  Google Scholar 

  • Dekant W, Vamvakas S, Koob M, Köchling A, Kanhai W, Müller D, et al. A mechanism of haloalkene-induced renal carcinogenesis. Environ Health Perspect. 1990;88:107–10.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dekant W, Urban G, Goersmann C, Anders MW. Thioketene formation from α-haloalkenyl 2-nitrophenyl disulfides: models for biological reactive intermediates of cytotoxic S-conjugates. J Am Chem Soc. 1991;113:5120–2.

    Article  CAS  Google Scholar 

  • Dekant W, Vamvakas S, Anders MW. Formation and fate of nephrotoxic and cytotoxic glutathione S-conjugates: cysteine conjugate beta-lyase pathway. Adv Pharmacol. 1994;27:115–62.

    Article  CAS  PubMed  Google Scholar 

  • Echeverria D, White RF, Sampaio C. A behavioral evaluation of PCE exposure in patients and dry cleaners: a possible relationship between clinical and preclinical effects. J Occup Environ Med. 1995;37:667–80.

    Article  CAS  PubMed  Google Scholar 

  • Elfarra AA. Halogenated hydrocarbons. In: Goldstein RS, editor. Renal toxicology. New York: Pergamon; 1997. p. 601–16.

    Google Scholar 

  • Elfarra AA, Anders MW. Renal processing of glutathione conjugates. Role in nephrotoxicity. Biochem Pharmacol. 1984;33:3729–32.

    Article  CAS  PubMed  Google Scholar 

  • Elfarra AA, Krause RJ. S-(1,2,2-trichlorovinyl)-L-cysteine sulfoxide, a reactive metabolite of S-(1,2,2-Trichlorovinyl)-L-cysteine formed in rat liver and kidney microsomes, is a potent nephrotoxicant. J Pharmacol Exp Ther. 2007;321:1095–101.

    Article  CAS  PubMed  Google Scholar 

  • Environmental Protection Agency. Toxicological review of trichloroethylene (CAS No. 79-01-6): in support of summary information on the Integrated Risk Information System (IRIS). Washington; 2011.

  • Gambaro G, Valente ML, Zanetti E, Della Barbera M, Del Prete D, D’Angelo A, et al. Mild tubular damage induces calcium oxalate crystalluria in a model of subtle hyperoxaluria: evidence that a second hit is necessary for renal lithogenesis. J Am Soc Nephrol. 2006;17:2213–9.

    Article  CAS  PubMed  Google Scholar 

  • Goldsworthy TL, Popp JA. Chlorinated hydrocarbon-induced peroxisomal enzyme activity in relation to species and organ carcinogenicity. Toxicol Appl Pharmacol. 1987;88:225–33.

    Article  CAS  PubMed  Google Scholar 

  • Green T, Dow J, Foster J. Increased formic acid excretion and the development of kidney toxicity in rats following chronic dosing with trichloroethanol, a major metabolite of trichloroethylene. Toxicology. 2003a;191:109–19.

    Article  CAS  PubMed  Google Scholar 

  • Green T, Lee R, Farrar D, Hill J. Assessing the health risks following environmental exposure to hexachlorobutadiene. Toxicol Lett. 2003b;138:63–73.

    Article  CAS  PubMed  Google Scholar 

  • Guengerich FP. Activation of dihaloalkanes by thiol-dependent mechanisms. J Biochem Mol Biol. 2003;36:20–7.

    Article  CAS  PubMed  Google Scholar 

  • Guha N, Loomis D, Grosse Y, Lauby-Secretan B, El Ghissassi F, Bouvard V, Benbrahim-Tallaa L, Baan R, Mattock H, Straif K, on behalf of the International Agency for Research on Cancer Monograph Working Group. Carcinogenicity of trichloroethylene, tetrachloroethylene, some other chlorinated solvents, and their metabolites. Lancet Oncol. 2012; 13: 1192–3

  • Guyton KZ, Hogan KA, Scott CS, Cooper GS, Bale AS, Kopylev L, et al. Human health effects of tetrachloroethylene: key findings and scientific issues. Environ Health Perspect. 2014;122:325–34.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hibino Y, Wang H, Naito H, Zhao N, Wang D, Jia X, et al. Sex differences in metabolism of trichloroethylene and trichloroethanol in guinea pigs. J Occup Health. 2013;55:443–9.

    Article  CAS  PubMed  Google Scholar 

  • Hook JB, Ishmael J, Lock EA. Nephrotoxicity of Hexachloro-1:3-butadiene in the rat: the effect of age, sex, and strain. Toxicol Appl Pharmacol. 1983;67:122–31.

    Article  CAS  PubMed  Google Scholar 

  • International Agency for Research on Cancer. Dry-cleaning, some chlorinated solvents and other industrial chemicals. 63, Lyon; 1995.

  • International Agency for Research on Cancer. Some chemicals that cause tumours of the kidney or urinary bladder in rodents and some other substances. 73, Lyon; 1999.

  • Irving RM, Elfarra AA. Mutagenicity of the cysteine S-conjugate sulfoxides of trichloroethylene and tetrachloroethylene in the Ames test. Toxicology. 2013;306:157–61.

    Article  CAS  PubMed  Google Scholar 

  • Irving RM, Pinkerton ME, Elfarra AA. Characterization of the chemical reactivity and nephrotoxicity of N-acetyl-S-(1,2-dichlorovinyl)-L-cysteine sulfoxide, a potential reactive metabolite of trichloroethylene. Toxicol Appl Pharmacol. 2013;267:1–10.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ishmael J, Lock EA. Nephrotoxicity of hexachlorobutadiene and its glutathione-derived conjugates. Toxicol Pathol. 1986;14:258–62.

    Article  CAS  PubMed  Google Scholar 

  • Ishmael J, Pratt I, Lock EA. Necrosis of the pars recta (S3 segment) of the rat kidney produced by hexachloro 1:3 butadiene. J Pathol. 1982;138:99–113.

    Article  CAS  PubMed  Google Scholar 

  • James EA, Gygi SP, Adams ML, Pierce RH, Fausto N, Aebersold RH, et al. Mitochondrial aconitase modification, functional inhibition, and evidence for a supramolecular complex of the TCA cycle by the renal toxicant S-(1,1,2,2-tetrafluoroethyl)-L-cysteine. Biochemistry. 2002;41:6789–97.

    Article  CAS  PubMed  Google Scholar 

  • Japan Industrial Safety Association. Carcinogenicity study of tetrachloroethylene by inhalation in rats and mice. Technical Report; 1993.

  • Johnson PD, Goldberg SJ, Mays MZ, Dawson BV. Threshold of trichloroethylene contamination in maternal drinking waters affecting fetal heart development in the rat. Environ Health Perspect. 2003;111:289–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jones TW, Wallin A, Thor H, Gerdes RG, Ormstad K, Orrenius S. The mechanism of pentachlorobutadienyl-glutathione nephrotoxicity studied with isolated rat renal epithelial cells. Arch Biochem Biophys. 1986;251:504–13.

    Article  CAS  PubMed  Google Scholar 

  • Keil DE, Peden-Adams MM, Wallace S, Ruiz P, Gilkeson GS. Assessment of trichloroethylene (TCE) exposure in murine strains genetically-prone and non-prone to develop autoimmune disease. J Environ Sci Health A Toxic Hazard Subst Environ Eng. 2009;44:443–53.

    Article  CAS  Google Scholar 

  • Kim D, Ghanayem BI. Comparative metabolism and disposition of trichloroethylene in Cyp2e1−/− and wild-type mice. Drug Metab Dispos. 2006;34:2020–7.

    Article  CAS  PubMed  Google Scholar 

  • Kim HS, Cha SH, Abraham DG, Cooper AJ, Endou H. Intranephron distribution of cysteine S-conjugate beta-lyase activity and its implication for hexachloro-1,3-butadiene-induced nephrotoxicity in rats. Arch Toxicol. 1997;71:131–41.

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Kim D, Pollack GM, Collins LB, Rusyn I. Pharmacokinetic analysis of trichloroethylene metabolism in male B6C3F1 mice: Formation and disposition of trichloroacetic acid, dichloroacetic acid, S-(1,2-dichlorovinyl)glutathione and S-(1,2-dichlorovinyl)-L-cysteine. Toxicol Appl Pharmacol. 2009;238:90–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Klaassen CD, Plaa GL. Relative effects of various chlorinated hydrocarbons on liver and kidney function in mice. Toxicol Appl Pharmacol. 1966;9:139–51.

    Article  CAS  PubMed  Google Scholar 

  • Kline SA, McCoy EC, Rosenkranz HS, Van Duuren BL. Mutagenicity of chloroalkene epoxides in bacterial systems. Mutat Res. 1982;101:115–25.

    Article  CAS  PubMed  Google Scholar 

  • Kociba RJ, Keyes DG, Jersey GC, Ballard JJ, Dittenber DA, Quast JF, et al. Results of a two year chronic toxicity study with hexachlorobutadiene in rats. Am Ind Hyg Assoc J. 1977;38:589–602.

    Article  CAS  PubMed  Google Scholar 

  • Koga N, Inskeep PB, Harris TM, Guengerich FP. S-[2-(N7-guanyl)ethyl]glutathione, the major DNA adduct formed from 1,2-dibromoethane. Biochemistry. 1986;25:2192–8.

    Article  CAS  PubMed  Google Scholar 

  • Krause RJ, Lash LH, Elfarra AA. Human kidney flavin-containing monooxygenases and their potential roles in cysteine s-conjugate metabolism and nephrotoxicity. J Pharmacol Exp Ther. 2003;304:185–91.

    Article  CAS  PubMed  Google Scholar 

  • Kuo CH, Hook JB. Effects of age and sex on hexachloro-1,3-butadiene toxicity in the Fischer 344 rat. Life Sci. 1983;33:517–23.

    Article  CAS  PubMed  Google Scholar 

  • Lash LH, Parker JC. Hepatic and renal toxicities associated with perchloroethylene. Pharmacol Rev. 2001;53:177–208.

    CAS  PubMed  Google Scholar 

  • Lash LH, Sausen PJ, Duescher RJ, Cooley AJ, Elfarra AA. Roles of cysteine conjugate beta-lyase and S-oxidase in nephrotoxicity: studies with S-(1,2-dichlorovinyl)-L-cysteine and S-(1,2-dichlorovinyl)-L-cysteine sulfoxide. J Pharmacol Exp Ther. 1994;269:374–83.

    CAS  PubMed  Google Scholar 

  • Lash LH, Parker JC, Scott CS. Modes of action of trichloroethylene for kidney tumorigenesis. Environ Health Perspect. 2000;108 Suppl 2:225–40.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lash LH, Qian W, Putt DA, Hueni SE, Elfarra AA, Krause RJ, et al. Renal and hepatic toxicity of trichloroethylene and its glutathione-derived metabolites in rats and mice: sex-, species-, and tissue-dependent differences. J Pharmacol Exp Ther. 2001;297:155–64.

    CAS  PubMed  Google Scholar 

  • Lash LH, Qian W, Putt DA, Hueni SE, Elfarra AA, Sicuri AR, et al. Renal toxicity of perchloroethylene and S-(1,2,2-trichlorovinyl)glutathione in rats and mice: sex- and species-dependent differences. Toxicol Appl Pharmacol. 2002;179:163–71.

    Article  CAS  PubMed  Google Scholar 

  • Livesey JC, Anders MW, Langvardt PW, Putzig CL, Reitz RH. Stereochemistry of the glutathione-dependent biotransformation of vicinal-dihaloalkanes to alkenes. Drug Metab Dispos. 1982;10:201–4.

    CAS  PubMed  Google Scholar 

  • Lock EA, Reed CJ. Trichloroethylene: mechanisms of renal toxicity and renal cancer and relevance to risk assessment. Toxicol Sci. 2006;91:313–31.

    Article  CAS  PubMed  Google Scholar 

  • Lock EA, Ishmael J, Hook JB. Nephrotoxicity of hexachloro-1,3-butadiene in the mouse: the effect of age, sex, strain, monooxygenase modifiers, and the role of glutathione. Toxicol Appl Pharmacol. 1984;72:484–94.

    Article  CAS  PubMed  Google Scholar 

  • Maguire DP, Turton JA, Scudamore CL, Swain AJ, McClure FJ, Smyth R, et al. Correlation of histopathology, urinary biomarkers, and gene expression responses following hexachloro-1:3-butadiene-induced acute nephrotoxicity in male Hanover Wistar rats: a 28-day time course study. Toxicol Pathol. 2013;41:779–94.

    Article  CAS  PubMed  Google Scholar 

  • Nakajima T, Wang RS, Murayama N, Sato A. Three forms of trichloroethylene-metabolizing enzymes in rat liver induced by ethanol, phenobarbital, and 3-methylcholanthrene. Toxicol Appl Pharmacol. 1990;102:546–52.

    Article  CAS  PubMed  Google Scholar 

  • National Toxicology Programme. Toxicology and carcinogenesis studies of tetrachloroethylene (perchloroethylene) in F344/N rats and B6C3F1 mice (inhalation studies). US DHHS Technical Report No. 311. US Department of Health and Human Services, Public Health Service, National Institutes of Health, National Toxicology Program, Research Triangle Park, NC; 1986.

  • Nelson SD, Pearson PG. Covalent and noncovalent interactions in acute lethal cell injury caused by chemicals. Annu Rev Pharmacol Toxicol. 1990;30:169–95.

    Article  CAS  PubMed  Google Scholar 

  • Pähler A, Birner G, Ott MM, Dekant W. Binding of hexachlorobutadiene to alpha 2u-globulin and its role in nephrotoxicity in rats. Toxicol Appl Pharmacol. 1997;147:372–80.

    Article  PubMed  Google Scholar 

  • Peden-Adams MM, Eudaly JG, Heesemann LM, Smythe J, Miller J, Gilkeson GS, et al. Developmental immunotoxicity of trichloroethylene (TCE): studies in B6C3F1 mice. J Environ Sci Health A Toxic Hazard Subst Environ Eng. 2006;41:249–71.

    Article  CAS  Google Scholar 

  • Rannug U, Sundvall A, Ramel C. The mutagenic effect of 1,2-dichloroethane on Salmonella typhimurium I. Activation through conjugation with glutathione in vitro. Chem Biol Interact. 1978;20:1–16.

    Article  CAS  PubMed  Google Scholar 

  • Ripp SL, Itagaki K, Philpot RM, Elfarra AA. Species and sex differences in expression of flavin-containing monooxygenase form 3 in liver and kidney microsomes. Drug Metab Dispos. 1999;27:46–52.

    CAS  PubMed  Google Scholar 

  • Rusyn I, Chiu WA, Lash LH, Kromhout H, Hansen J, Guyton KZ. Trichloroethylene: mechanistic, epidemiologic and other supporting evidence of carcinogenic hazard. Pharmacol Ther. 2014;141:55–68.

    Article  CAS  PubMed  Google Scholar 

  • Sadeghnia HR, Yousefsani BS, Rashidfar M, Boroushaki MT, Asadpour E, Ghorbani A. Protective effect of rutin on hexachlorobutadiene-induced nephrotoxicity. Ren Fail. 2013;35:1151–5.

    Article  CAS  PubMed  Google Scholar 

  • Simmons JE, Boyes WK, Bushnell PJ, Raymer JH, Limsakun T, McDonald A, et al. A physiologically based pharmacokinetic model for trichloroethylene in the male Long–Evans rat. Toxicol Sci. 2002;69:3–15.

    Article  CAS  PubMed  Google Scholar 

  • Tabrez S, Ahmad M. Genotoxicity of trichloroethylene in the natural milieu. Int J Hyg Environ Health. 2012;215:333–8.

    Article  CAS  PubMed  Google Scholar 

  • Tateishi M, Suzuki S, Shimizu H. Cysteine conjugate beta-lyase in rat liver. A novel enzyme catalyzing formation of thiol-containing metabolites of drugs. J Biol Chem. 1978a;253:8854–9.

    CAS  PubMed  Google Scholar 

  • Tateishi M, Suzuki S, Shimizu H. The metabolism of bromazepam in the rat-identification of mercapturic acid and its conversion in vitro to methylthio-bromazepam. Biochem Pharmacol. 1978b;27:809–10.

    Article  CAS  PubMed  Google Scholar 

  • Terracini B, Parker VH. A pathological study on the toxicity of s-dichlorovinyl-l-cysteine. Food Cosmet Toxicol. 1965;3:67–74.

    Article  CAS  PubMed  Google Scholar 

  • Trevisan A, Cristofori P, Fanelli G, Bicciato F, Stocco E. Glutamine transaminase K intranephron localization in rats determined by urinary excretion after treatment with segment-specific nephrotoxicants. Arch Toxicol. 1998;72:531–5.

    Article  CAS  PubMed  Google Scholar 

  • Trevisan A, Cristofori P, Fanelli G. Glutamine synthetase activity in rat urine as sensitive marker to detect S3 segment-specific injury of proximal tubule induced by xenobiotics. Arch Toxicol. 1999;73:255–62.

    Article  CAS  PubMed  Google Scholar 

  • Trevisan A, Maccà I, Rui F, Carrieri M, Battista Bartolucci G, Manno M. Kidney and liver biomarkers in female dry-cleaning workers exposed to perchloroethylene. Biomarkers. 2000;5:399–409.

    Article  CAS  PubMed  Google Scholar 

  • Trevisan A, Giraldo M, Borella M, Bottegal S, Fabrello A. Tubular segment-specific biomarkers of nephrotoxicity in the rat. Toxicol Lett. 2001;124:113–20.

    Article  CAS  PubMed  Google Scholar 

  • Trevisan A, Cristofori P, Beggio M, Venturini MB, Di Marco L, Zanetti E. Segmentary effects on the renal proximal tubule due to hexachloro-1,3-butadiene in rats: biomarkers related to gender. J Appl Toxicol. 2005;25:13–9.

    Article  CAS  PubMed  Google Scholar 

  • Vamvakas S, Dekant W, Berthold K, Schmidt S, Wild D, Henschler D. Enzymatic transformation of mercapturic acids derived from halogenated alkenes to reactive and mutagenic intermediates. Biochem Pharmacol. 1987;36:2741–8.

    Article  CAS  PubMed  Google Scholar 

  • Vamvakas S, Herkenhoff M, Dekant W, Henschler D. Mutagenicity of tetrachloroethene in the Ames test—metabolic activation by conjugation with glutathione. J Biochem Toxicol. 1989;4:21–7.

    Article  CAS  PubMed  Google Scholar 

  • Vlaanderen J, Straif K, Ruder A, Blair A, Hansen J, Lynge E, et al. Tetrachloroethylene exposure and bladder cancer risk: a meta-analysis of dry-cleaning-worker studies. Environ Health Perspect. 2014;122:661–6.

    PubMed Central  PubMed  Google Scholar 

  • Werner M, Birner G, Dekant W. The role of cytochrome P4503A1/2 in the sex-specific sulfoxidation of the hexachlorobutadiene metabolite, N-acetyl-S-(pentachlorobutadienyl)-L-cysteine in rats. Drug Metab Dispos. 1995;23:861–8.

    CAS  PubMed  Google Scholar 

  • Werner M, Birner G, Dekant W. Sulfoxidation of mercapturic acids derived from tri- and tetrachloroethene by cytochromes P450 3A: a bioactivation reaction in addition to deacetylation and cysteine conjugate beta-lyase mediated cleavage. Chem Res Toxicol. 1996;9:41–9.

    Article  CAS  PubMed  Google Scholar 

  • World Health Organization. Hexachlorobutadiene (Environmental Health Criteria 156). Geneve: International Programme on Chemical Safety; 1994.

    Google Scholar 

  • Zanetti E, Chiusolo A, Defazio R, Casartelli A, Cappelletti E, Bocchini N, et al. Evaluation of aging influence on renal toxicity caused by segment-specific nephrotoxicants of the proximal tubule in rat. J Appl Toxicol. 2010;30:142–50.

    CAS  PubMed  Google Scholar 

  • Zhou YC, Waxman DJ. Activation of peroxisome proliferator-activated receptors by chlorinated hydrocarbons and endogenous steroids. Environ Health Perspect. 1998;106 Suppl 4:983–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

AVS is supported by the Italian Ministero della Salute (GR-2011-02346985).

Conflict of interest statement

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Trevisan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cristofori, P., Sauer, A.V. & Trevisan, A. Three common pathways of nephrotoxicity induced by halogenated alkenes. Cell Biol Toxicol 31, 1–13 (2015). https://doi.org/10.1007/s10565-015-9293-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-015-9293-x

Keywords

Navigation