Skip to main content
Log in

Nano-Mg(OH)2-induced proliferation inhibition and dysfunction of human umbilical vein vascular endothelial cells through caveolin-1-mediated endocytosis

  • Original Research
  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

Nano-Mg(OH)2 is efficiently used in pollutant adsorption and removal due to its high adsorption capability, low-cost, and recyclability. A recent research from our group showed that Mg(OH)2 nanoflakes are not evidently internalized by cancer cells and are not cytotoxic. But the biocompatibility and potential toxicity of nano-Mg(OH)2 in a normal biological system are largely unclear. Nanoparticles could affect the function of endothelial cells, and endothelial dysfunction represents an early sign of lesion within the vasculature. Here, we applied the human umbilical vein vascular endothelial cells (HUVECs) as an in vitro model of the endothelium to study the cytotoxicity of nano-Mg(OH)2. Our results showed that nano-Mg(OH)2 at 200 μg/ml impaired proliferation and induced dysfunction of HUVECs, but did not result in cell necrosis and apoptosis. Transmission electron microscopy images and immunofluorescence results showed that the nano-Mg(OH)2 could enter HUVECs through caveolin-1-mediated endocytosis. Nano-Mg(OH)2 at high concentrations decreased the level of caveolin-1 and increased the activity of endothelial nitric oxide synthase (eNOS), thus leading to the production of excess nitric oxide (NO). In this work, we provide the cell damage concentrations of nano-Mg(OH)2 nanoparticles, and we propose a mechanism of injury induced by nano-Mg(OH)2 in HUVECs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

HUVECs:

Human umbilical vein vascular endothelial cells

eNOS:

Endothelial nitric oxide synthase

NO:

Nitric oxide

LDH:

Lactate dehydrogenase

AO:

Acridine orange

Ac-LDL:

Acetylated low-density lipoprotein

References

  • Altman R, Rutledge JC. The vascular contribution to Alzheimer’s disease. Clin Sci (Lond). 2010;119:407–21.

    Article  CAS  Google Scholar 

  • Atochin DN, Huang PL. Endothelial nitric oxide synthase transgenic models of endothelial dysfunction. Pflugers Arch. 2010;460:965–74.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bai N et al. The pharmacology of particulate matter air pollution-induced cardiovascular dysfunction. Pharmacol Ther. 2007;113:16–29.

    Article  CAS  PubMed  Google Scholar 

  • Bakar AM et al. Isoflurane protects against human endothelial cell apoptosis by inducing sphingosine kinase-1 via ERK MAPK. Int J Mol Sci. 2012;13:977–93.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bauersachs J, Widder JD. Endothelial dysfunction in heart failure. Pharmacol Rep. 2008;60:119–26.

    CAS  PubMed  Google Scholar 

  • Bucci M et al. In vivo delivery of the caveolin-1 scaffolding domain inhibits nitric oxide synthesis and reduces inflammation. Nat Med. 2000;6:1362–7.

    Article  CAS  PubMed  Google Scholar 

  • Cao Q et al. A study of the potential application of nano-Mg(OH)2 in adsorbing low concentrations of uranyl tricarbonate from water. Nanoscale. 2012;4:2423–30.

    Article  CAS  PubMed  Google Scholar 

  • Chen WL et al. A novel marine compound xyloketal B protects against oxidized LDL-induced cell injury in vitro. Biochem Pharmacol. 2009;78:941–50.

    Article  CAS  PubMed  Google Scholar 

  • Cheng C et al. Toxicity and imaging of multi-walled carbon nanotubes in human macrophage cells. Biomaterials. 2009;30:4152–60.

    Article  CAS  PubMed  Google Scholar 

  • Cokakli M et al. Differential expression of Caveolin-1 in hepatocellular carcinoma: correlation with differentiation state, motility and invasion. BMC Cancer. 2009;9:65.

    Article  PubMed Central  PubMed  Google Scholar 

  • Donnini D et al. A new model of human aortic endothelial cells in vitro. Biochimie. 2000;82:1107–14.

    Article  CAS  PubMed  Google Scholar 

  • Duan J et al. Silica nanoparticles induce autophagy and endothelial dysfunction via the PI3K/Akt/mTOR signaling pathway. Int J Nanomedicine. 2014;9:5131–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Endemann DH, Schiffrin EL. Endothelial dysfunction. J Am Soc Nephrol. 2004;15:1983–92.

    Article  CAS  PubMed  Google Scholar 

  • Fleissner F, Thum T. Critical role of the nitric oxide/reactive oxygen species balance in endothelial progenitor dysfunction. Antioxid Redox Signal. 2011;15:933–48.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gao B-Y et al. Color removal from dye-containing wastewater by magnesium chloride. J Environ Manag. 2007;82:167–72.

    Article  CAS  Google Scholar 

  • Gao N et al. Steering carbon nanotubes to scavenger receptor recognition by nanotube surface chemistry modification partially alleviates NFkappaB activation and reduces its immunotoxicity. ACS Nano. 2011;5:4581–91.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gong Q-H et al. Protective effects of Ginkgo biloba leaf extract on aluminum-induced brain dysfunction in rats. Life Sci. 2005;77:140–8.

    Article  CAS  PubMed  Google Scholar 

  • Hirase T, Node K. Endothelial dysfunction as a cellular mechanism for vascular failure. Am J Physiol Heart Circ Physiol. 2012;302:H499–505.

    Article  CAS  PubMed  Google Scholar 

  • Humplik T et al. Nanostructured materials for water desalination. Nanotechnology. 2011;22:292001.

    Article  CAS  PubMed  Google Scholar 

  • Ioakeimidis N et al. Relationship of asymmetric dimethylarginine with penile Doppler ultrasound parameters in men with vasculogenic erectile dysfunction. Eur Urol. 2011;59:948–55.

    Article  CAS  PubMed  Google Scholar 

  • Jaffe EA et al. Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Investig. 1973;52:2745–56.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kawashima S, Yokoyama M. Dysfunction of endothelial nitric oxide synthase and atherosclerosis. Arterioscler Thromb Vasc Biol. 2004;24:998–1005.

    Article  CAS  PubMed  Google Scholar 

  • Lee J et al. Caveolae-mediated endocytosis of conjugated polymer nanoparticles. Macromol Biosci. 2013;13:913–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li H, Forstermann U. Nitric oxide in the pathogenesis of vascular disease. J Pathol. 2000;190:244–54.

    Article  CAS  PubMed  Google Scholar 

  • Liu W et al. Recycling Mg (OH) 2 nanoadsorbent during treating the low concentration of CrVI. Environ Sci Technol. 2011;45:1955–61.

    Article  CAS  PubMed  Google Scholar 

  • Majkova Z et al. The role of caveolae in endothelial cell dysfunction with a focus on nutrition and environmental toxicants. J Cell Mol Med. 2010;14:2359–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Michel T, Vanhoutte PM. Cellular signaling and NO production. Pflugers Arch. 2010;459:807–16.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mineo C, Shaul PW. Circulating cardiovascular disease risk factors and signaling in endothelial cell caveolae. Cardiovasc Res. 2006;70:31–41.

    Article  CAS  PubMed  Google Scholar 

  • Mu Q et al. Endosomal leakage and nuclear translocation of multiwalled carbon nanotubes: developing a model for cell uptake. Nano Lett. 2009;9:4370–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mudau M et al. Endothelial dysfunction: the early predictor of atherosclerosis. Cardiovasc J Afr. 2012;23:222–31.

    Article  PubMed Central  PubMed  Google Scholar 

  • Murdaca G et al. Endothelial dysfunction in rheumatic autoimmune diseases. Atherosclerosis. 2012;224:309–17.

    Article  CAS  PubMed  Google Scholar 

  • Oesterling E et al. Alumina nanoparticles induce expression of endothelial cell adhesion molecules. Toxicol Lett. 2008;178:160–6.

    Article  CAS  PubMed  Google Scholar 

  • Pan X et al. Investigation of antibacterial activity and related mechanism of a series of nano-Mg(OH)(2). ACS Appl Mater Interfaces. 2013;5:1137–42.

    Article  CAS  PubMed  Google Scholar 

  • Peters K et al. Effects of nano-scaled particles on endothelial cell function in vitro: studies on viability, proliferation and inflammation. J Mater Sci Mater Med. 2004;15:321–5.

    Article  CAS  PubMed  Google Scholar 

  • Quyyumi AA. Endothelial function in health and disease: new insights into the genesis of cardiovascular disease. Am J Med. 1998;105:32S–9S.

    Article  CAS  PubMed  Google Scholar 

  • Rafikov R et al. eNOS activation and NO function: structural motifs responsible for the posttranslational control of endothelial nitric oxide synthase activity. J Endocrinol. 2011;210:271–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rahman A, Sward K. The role of caveolin-1 in cardiovascular regulation. Acta Physiol (Oxf). 2009;195:231–45.

    Article  CAS  Google Scholar 

  • Ramos-Cabrer P, Campos F. Liposomes and nanotechnology in drug development: focus on neurological targets. Int J Nanomedicine. 2013;8:951–60.

    Article  PubMed Central  PubMed  Google Scholar 

  • Reuel NF et al. Nanoengineered glycan sensors enabling native glycoprofiling for medicinal applications: towards profiling glycoproteins without labeling or liberation steps. Chem Soc Rev. 2012;41:5744–79.

    Article  CAS  PubMed  Google Scholar 

  • Rochette L et al. Nitric oxide synthase inhibition and oxidative stress in cardiovascular diseases: possible therapeutic targets? Pharmacol Ther. 2013;140:239–57.

    Article  CAS  PubMed  Google Scholar 

  • Salmina AB et al. Endothelial dysfunction and repair in Alzheimer-type neurodegeneration: neuronal and glial control. J Alzheimers Dis. 2010;22:17–36.

    PubMed  Google Scholar 

  • Santoro D et al. Endothelial dysfunction in chronic renal failure. J Ren Nutr. 2010;20:S103–8.

    Article  CAS  PubMed  Google Scholar 

  • Schlag S, et al. Stanford Research Institute Magnesium oxide and other magnesium chemicals Chemical Economics Handbook, CA; 2007

  • Smedlund K et al. On the role of endothelial TRPC3 channels in endothelial dysfunction and cardiovascular disease. Cardiovasc Hematol Agents Med Chem. 2012;10:265–74.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sowa G. Caveolae, caveolins, cavins, and endothelial cell function: new insights. Front Physiol. 2012;2:120.

    Article  PubMed Central  PubMed  Google Scholar 

  • Su L et al. The effect of novel magnetic nanoparticles on vascular endothelial cell function in vitro and in vivo. J Hazard Mater. 2012;235–236:316–25.

    Article  PubMed  Google Scholar 

  • Vesterdal LK et al. Pulmonary exposure to carbon black nanoparticles and vascular effects. Part Fibre Toxicol. 2010;7:33.

    Article  PubMed Central  PubMed  Google Scholar 

  • Voyta JC et al. Identification and isolation of endothelial cells based on their increased uptake of acetylated-low density lipoprotein. J Cell Biol. 1984;99:2034–40.

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Malik AB. Nanoparticles squeezing across the blood-endothelial barrier via caveolae. Ther Deliv. 2013;4:131–3.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wharton J et al. Dissociation of insulin receptor expression and signaling from caveolin-1 expression. J Biol Chem. 2005;280:13483–6.

    Article  CAS  PubMed  Google Scholar 

  • Xia T et al. Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano. 2008;2:2121–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xu Y et al. Caveolae and endothelial dysfunction: filling the caves in cardiovascular disease. Eur J Pharmacol. 2008;585:256–60.

    Article  CAS  PubMed  Google Scholar 

  • Zhang R et al. Cell rescue by nanosequestration: reduced cytotoxicity of an environmental remediation residue, Mg(OH)2 nanoflake/Cr(VI) adduct. Environ Sci Technol. 2014;48:1984–92.

    Article  CAS  PubMed  Google Scholar 

  • Zhu MT et al. Endothelial dysfunction and inflammation induced by iron oxide nanoparticle exposure: risk factors for early atherosclerosis. Toxicol Lett. 2011;203:162–71.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported in part by the National 973 Research Project (No. 2010CB933504), the National Natural Science Foundation of China (Nos. 90813022, 81021001, 31070735, 31000510, 31200859, and 20972088), Shandong Province Science & Technology Development Project (2014GSF118136), and Shandong Excellent Young Scientist Award Fund (BS2013SW010).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to BaoXiang Zhao or JunYing Miao.

Additional information

Ning Meng and Lei Han contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

(DOC 1467 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, N., Han, L., Pan, X. et al. Nano-Mg(OH)2-induced proliferation inhibition and dysfunction of human umbilical vein vascular endothelial cells through caveolin-1-mediated endocytosis. Cell Biol Toxicol 31, 15–27 (2015). https://doi.org/10.1007/s10565-014-9291-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-014-9291-4

Keywords

Navigation