Skip to main content
Log in

Identification of oxidative stress and responsive genes of HepG2 cells exposed to quinocetone, and compared with its metabolites

  • Original Research
  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

Quinocetone, a new quinoxaline 1,4-dioxide derivative used in food-producing animals in China, exerts genotoxic effects on HepG2 cells. It triggers significant cytotoxicity and genotoxicity in vitro, but the detailed mechanism by which quinocetone induces adverse biological effects is not yet known. We analyzed the mechanisms behind quinocetone intoxication by investigating oxidative stress based on non-enzymatic and enzymatic antioxidant activities, and by identifying differentially regulated genes of HepG2 cells exposed to quinocetone using polymerase chain reaction (PCR)-based suppression subtractive hybridization to illustrate the toxicity mechanism of quinocetone. Meanwhile, the characteristics of oxidative stress and differentially regulated genes induced by quinocetone metabolites, 1,4-bisdesoxyquinocetone and 3-methylquinoxaline-2-carboxylic acid, were investigated too. Results showed that quinocetone damaged the antioxidant defense abilities of HepG2 cells by reducing the activities of endogenous antioxidant enzymes, lowering glutathione concentration, and elevating malondialdehyde level. We identified 160 quinocetone-responsive genes that were associated with cell proliferation, glucose metabolism, oxidative stress, and apoptosis, such as NAD(P)H dehydrogenase, quinone 1; and prolyl 4-hydroxylase, beta polypeptide. The expressions of some differentially regulated genes were confirmed by real-time reverse transcription-polymerase chain reaction. However, quinocetone metabolites showed little effects on HepG2 cells. These results showed that reactive oxygen species were the key mediators of quinocetone cytotoxicity in HepG2 cells and that c-MYC-dependent activation of the mitochondrial apoptotic pathway may be associated with quinocetone-induced toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmad IM, Aykin-Burns N, Sim JE, Walsh SA, Higashikubo R, Buettner GR, et al. Mitochondrial O2*- and H2O2 mediate glucose deprivation-induced stress in human cancer cells. J Biol Chem. 2005;280:4254–63.

    Article  CAS  PubMed  Google Scholar 

  • Averill-Bates DA, Przybytkowski E. The role of glucose in cellular defences against cytotoxicity of hydrogen peroxide in Chinese hamster ovary cells. Arch Biochem Biophys. 1994;312:52–8.

    Article  CAS  PubMed  Google Scholar 

  • Azqueta A, Arbillaga L, Pachón G, Cascante M, Creppy EE. López de Cerain A. A quinoxaline 1,4-di-N-oxide derivative induces DNA oxidative damage not attenuated by vitamin C and E treatment. Chem Biol Interact. 2007;168:95–105.

    Article  CAS  PubMed  Google Scholar 

  • Bates GJ, Nicol SM, Wilson BJ, Jacobs AM, Bourdon JC, Wardrop J, et al. The DEAD box protein p68: a novel transcriptional coactivator of the p53 tumour suppressor. EMBO J. 2005;24:543–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Calviello G, Piccioni E, Boninsegna A, Tedesco B, Maggiano N, Serini S, et al. DNA damage and apoptosis induction by the pesticide Mancozeb in rat cells: involvement of the oxidative mechanism. Toxicol Appl Pharmacol. 2006;211:87–96.

    Article  CAS  PubMed  Google Scholar 

  • Candé C, Vahsen N, Kouranti I, Schmitt E, Daugas E, Spahr C, et al. AIF and cyclophilin A cooperate in apoptosis-associated chromatinolysis. Oncogene. 2004;23:1514–21.

    Article  PubMed  Google Scholar 

  • Carta A, Corona P, Loriga M. Quinoxaline 1,4-dioxide: a versatile scaffold endowed with manifold activities. Curr Med Chem. 2005;12:2259–72.

    Article  CAS  PubMed  Google Scholar 

  • Chang BY, Conroy KB, Machleder EM, Cartwright CA. RACK1, a receptor for activated C kinase and a homolog of the beta subunit of G proteins, inhibits activity of src tyrosine kinases and growth of NIH 3 T3 cells. Mol Cell Biol. 1998;18:3245–56.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen Q, Tang S, Jin X, Zou J, Chen K, Zhang T, et al. Investigation of the genotoxicity of quinocetone, carbadox and olaquindox in vitro using Vero cells. Food Chem Toxicol. 2009;47:328–34.

    Article  CAS  PubMed  Google Scholar 

  • Coleman MC, Asbury CR, Daniels D, Du J, Aykin-Burns N, Smith BJ, et al. 2-deoxy-D-glucose causes cytotoxicity, oxidative stress, and radiosensitization in pancreatic cancer. Free Radic Biol Med. 2008;44:322–31.

    Article  CAS  PubMed  Google Scholar 

  • Dragan YP, Bidlack WR, Cohen SM, Goldsworthy TL, Hard GC, Howard PC, et al. Implications of apoptosis for toxicity, carcinogenicity, and risk assessment: fumonisin B(1) as an example. Toxicol Sci. 2001;61(1):6–17.

    Article  CAS  PubMed  Google Scholar 

  • Du H, Huang X, Wang S, Wu Y, Xu W, Li M. PSMA7, a potential biomarker of diseases. Protein Pept Lett. 2009;16:486–9.

    Article  CAS  PubMed  Google Scholar 

  • Feo S, Arcuri D, Piddini E, Passantino R, Giallongo A. ENO1 gene product binds to the c-myc promoter and acts as a transcriptional repressor: relationship with Myc promoter-binding protein 1 (MBP-1). FEBS Lett. 2000;473:47–52.

    Article  CAS  PubMed  Google Scholar 

  • Forsythe HL, Jarvis JL, Turner JW, Elmore LW, Holt SE. Stable association of hsp90 and p23, but Not hsp70, with active human telomerase. J Biol Chem. 2001;276:15571–4.

    Article  CAS  PubMed  Google Scholar 

  • Gil P, Fariñas F, Casado A, López-Fernández E. Malondialdehyde: a possible marker of ageing. Gerontology. 2002;48(4):209–14.

    Article  CAS  PubMed  Google Scholar 

  • Griffith OW. Mechanism of action, metabolism, and toxicity of buthionine sulfoximine and its higher homologs, potent inhibitors of glutathione synthesis. J Biol Chem. 1982;257(22):13704–12.

    CAS  PubMed  Google Scholar 

  • Huang XJ, Ihsan A, Wang X, Dai MH, Wang YL, Su SJ, et al. Long-term dose-dependent response of Mequindox on aldosterone, corticosterone and five steroidogenic enzyme mRNAs in the adrenal of male rats. Toxicol Lett. 2009;191:167–73.

    Article  CAS  PubMed  Google Scholar 

  • Huang XJ, Zhang HH, Wang X, Huang LL, Zhang LY, Yan CX, et al. ROS mediated cytotoxicity of porcine adrenocortical cells induced by QdNOs derivatives in vitro. Chem Biol Interact. 2010;185:227–34.

    Article  CAS  PubMed  Google Scholar 

  • Ihsan A, Wang X, Zhang W, Tu H, Wang Y, Huang L, et al. Genotoxicity of quinocetone, cyadox and olaquindox in vitro and in vivo. Food Chem Toxicol. 2013;59:207–14.

    Article  CAS  PubMed  Google Scholar 

  • Jin X, Chen Q, Tang SS, Zou JJ, Chen KP, Zhang T, et al. Investigation of quinocetone-induced genotoxicity in HepG2 cells using the comet assay, cytokinesis-block micronucleus test and RAPD analysis. Toxicol In Vitro. 2009;23:1209–14.

    Article  CAS  PubMed  Google Scholar 

  • Joza N, Susin SA, Daugas E, Stanford WL, Cho SK, Li CY, et al. Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death. Nature. 2001;410:549–54.

    Article  CAS  PubMed  Google Scholar 

  • Kim JW, Dang CV. Multifaceted roles of glycolytic enzymes. Trends Biochem Sci. 2005;30:142–50.

    Article  CAS  PubMed  Google Scholar 

  • Klefstrom J, Verschuren EW. Evan G c-Myc augments the apoptotic activity of cytosolic death receptor signaling proteins by engaging the mitochondrial apoptotic pathway. J Biol Chem. 2002;277:43224–32.

    Article  CAS  PubMed  Google Scholar 

  • Knasmüller S, Mersch-Sundermann V, Kevekordes S, Darroudi F, Huber WW, Hoelzl C, et al. Use of human-derived liver cell lines for the detection of environmental and dietary genotoxicants; current state of knowledge. Toxicology. 2004;198:315–28.

    Article  PubMed  Google Scholar 

  • Kohda T, Asai A, Kuroiwa Y, Kobayashi S, Aisaka K, Nagashima G, et al. Tumour suppressor activity of human imprinted gene PEG3 in a glioma cell line. Genes Cells. 2001;6:237–47.

    Article  CAS  PubMed  Google Scholar 

  • Li GY, Kim M, Kim JH, Lee MO, Chung JH, Lee BH. Gene expression profiling in human lung fibroblast following cadmium exposure. Food Chem Toxicol. 2008;46:1131–7.

    Article  CAS  PubMed  Google Scholar 

  • Münz M, Kieu C, Mack B, Schmitt B, Zeidler R, Gires O. The carcinoma-associated antigen EpCAM upregulates c-myc and induces cell proliferation. Oncogene. 2004;23:5748–58.

    Article  PubMed  Google Scholar 

  • Nath KA, Ngo EO, Hebbel RP, Croatt AJ, Zhou B, Nutter LM. alpha-Ketoacids scavenge H2O2 in vitro and in vivo and reduce menadione-induced DNA injury and cytotoxicity. Am J Physiol. 1995;268(1 Pt 1):C227–36.

    CAS  PubMed  Google Scholar 

  • Saretzki G. Telomerase, mitochondria and oxidative stress. Exp Gerontol. 2009;44(8):485–92.

    Article  CAS  PubMed  Google Scholar 

  • Walczak H, Degli-Esposti MA, Johnson RS, Smolak PJ, Waugh JY, Boiani N, et al. TRAIL-R2: a novel apoptosis-mediating receptor for TRAIL. EMBO J. 1997;16:5386–97.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang X, Zhang W, Wang Y, Peng D, Ihsan A, Huang X, et al. Acute and sub-chronic oral toxicological evaluations of quinocetone in Wistar rats. Regul Toxicol Pharmacol. 2010;58:421–7.

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Huang XJ, Ihsan A, Liu ZY, Huang LL, Zhang HH, et al. Metabolites and JAK/STAT pathway were involved in the liver and spleen damage in male Wistar rats fed with mequindox. Toxicology. 2011;280(3):126–34.

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Fu J, Xiao X, Yan H, Bao W, Wang D, et al. Quinocetone triggers oxidative stress and induces cytotoxicity and genotoxicity in human peripheral lymphocytes of both genders. J Sci Food Agric. 2013;93:1317–25.

    Article  CAS  PubMed  Google Scholar 

  • Yoshimura H, Nakamura M, Koeda T, Yoshikawa K. Mutagenicities of carbadox and olaquindox-growth promoters for pigs. Mutat Res. 1981;90:49–55.

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Tang S, Yang C, Shen J, Wang Z, Li Y, et al. Analysis of quinocetone and its four metabolites in swine liver by ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry. J Anal Bioanal Techniques. 2010;1:1–6.

    Google Scholar 

  • Zhang T, Tang SS, Jin X, Liu FY, Zhang CM, Zhao WX, et al. c-Myc influences olaquindox-induced apoptosis in human hepatoma G2 cells. Mol Cell Biochem. 2011;354:253–61.

    Article  CAS  PubMed  Google Scholar 

  • Zhang K, Ban M, Zhao Z, Zheng H, Wang X, Wang M, et al. Cytotoxicity and genotoxicity of 1,4-bisdesoxyquinocetone, 3-methylquinoxaline-2-carboxylic acid (MQCA) in human hepatocytes. Res Vet Sci. 2012;93:1393–401.

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Wang C, Tang S, Sun Y, Zhao D, Zhang S, et al. TNFR1/TNF-α and mitochondria interrelated signaling pathway mediates quinocetone-induced apoptosis in HepG2 cells. Food Chem Toxicol. 2013;62:825–38.

    Article  CAS  PubMed  Google Scholar 

  • Zou J, Chen Q, Tang S, Jin X, Chen K, Zhang T, et al. Olaquindox-induced genotoxicity and oxidative DNA damage in human hepatoma G2 (HepG2) cells. Mutat Res. 2009;676:27–33.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that there is no conflict of interest involved in this study.

Funding information

This work was supported by the Youth Science Funds of National Natural Science Foundation of China (30901087). This project is also supported in part by Special Fund for Agro-scientific Research in the Public Interest (201303038-1).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Keyu Zhang or Feiqun Xue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, K., Zheng, W., Zheng, H. et al. Identification of oxidative stress and responsive genes of HepG2 cells exposed to quinocetone, and compared with its metabolites. Cell Biol Toxicol 30, 313–329 (2014). https://doi.org/10.1007/s10565-014-9287-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-014-9287-0

Keywords

Navigation